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Science and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; cEnvironmental
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; dUrban Dynamics Institute, Oak
Ridge National Laboratory, Oak Ridge, TN, USA

ABSTRACT
Modeling the interactions of water and energy systems is important
to the enforcement of infrastructure security and system sustainabil-
ity. To this end, recent technological advancement has allowed the
production of large volumes of data associated with functioning of
these sectors. We are beginning to see that statistical and machine
learning techniques can help elucidate characteristic patterns across
these systems from water availability, transport, and use to energy
generation, fuel supply, and customer demand, and in the interde-
pendencies among these systems that can leave these systems vul-
nerable to cascading impacts from single disruptions. In this paper,
we discuss ways in which data and machine learning can be applied
to the challenges facing the energy-water nexus along with the
potential issues associated with the machine learning techniques
themselves. We then survey machine learning techniques that have
found application to date in energy-water nexus problems. We con-
clude by outlining future research directions and opportunities for
collaboration among the energy-water nexus and machine learning
communities that can lead to mutual synergistic advantage.
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1. Introduction

Energy and water are two foremost essential resources for human existence. These
resources have become increasingly difficult to sustain in the future as there is great
level of stress in maintaining its demand due to increase in population, climate change,
and urbanization (Boersma et al., 2014; Eftelioglu, Jiang, Tang, & Shekhar, 2017; Food,
2014; Hoff, 2011). Energy-water nexus implies the bidirectional relationship between
energy and water resources since they are intrinsically interconnected and availability
and generation of one resource significantly depends on the availability of the other
resource (Chen & Chen, 2016; DOE, 2014; Healy, Alley, Engle, McMahon, & Bales, 2015;

CONTACT Syed Mohammed Arshad Zaidi szaidi2@buffalo.edu Computer Science and Engineering
Department, University at Buffalo, Buffalo, NY 14260-1660, USA

BIG EARTH DATA
2018, VOL. 2, NO. 3, 228–267
https://doi.org/10.1080/20964471.2018.1526057

This manuscript has been co-authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy
(DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government
retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow
others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in
accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0002-7579-8892
http://orcid.org/0000-0001-8990-1398
http://orcid.org/0000-0002-3319-0846
http://orcid.org/0000-0002-7789-3199
http://orcid.org/0000-0002-7789-3199
http://orcid.org/0000-0003-1555-1377
http://orcid.org/0000-0002-5551-3140
http://www.digitalearth-isde.org/
http://english.radi.cas.cn/
http://www.sciencep.com/
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/20964471.2018.1526057&domain=pdf


Qin, Curmi, Kopec, Allwood, & Richards, 2015). Energy generation requires large quan-
tities of water while at the same time large amount of energy is required for distribution,
use, and treatment of water (Healy et al., 2015). With the rapid change in landscape,
societal development, political, and economic policies, it has become increasingly
difficult to estimate the future levels of water and energy with respect to this nexus in
different spatial and temporal scales. Water and energy are also inextricably linked to
food, which is another important resource that is difficult to sustain with the ever
growing global demand. Intensive energy and water is required in food production
(Rasul, 2014). Large use of fertilizer and pesticide in agriculture production affects
freshwater and coastal ecosystems. Moreover, nutrient loading in waterways also dis-
rupts the aquatic ecosystems which in turn increases the costs for water treatment (Cai,
Wallington, Shafiee-Jood, & Marston, 2018). Food production can be useful in delivering
energy in the form of biomass (Tilman et al., 2009), although it also requires large
quantities of water supply that in turn consumes great amount of energy (Rasul,
2016). In addition to this, climate change plays an important role in shaping the future
of link between energy and water. Changes in precipitation and temperature patterns
and occurrence of extreme events affects water resources required in energy generation.
In the past few years, the occurrence of extreme events like heat waves and droughts
have greatly affected the energy production due to lack of water availability required for
power-generation plants (Luskova, Leitner, Sventekova, & Dvorak, 2018; van Vliet,
Sheffield, Wiberg, & Wood, 2016). For example, the occurrence of heat wave in France
in 2003 led to the decrease in level of power output generated by nuclear power plant.
In addition to this, droughts in India in 2012 led to the power outages for several weeks
due to limited water supply required in hydroelectric power plants (Webber, 2013).
Similarly, the occurrence of hurricanes like Irene and Sandy in 2011 and 2012 respec-
tively had caused major damage to energy infrastructure in the northeast and mid-
Atlantic United States (Oe-DOE, 2013). Moreover, in the recent past, hurricane Irma had
significantly affected both energy as well as water infrastructure (Britt, 2018;
Shuckburgh, Mitchell, & Stott, 2017; UNDP, 2017).

In the past, efforts have been solely put in modeling individual energy and water
resource systems (DOE, 2014; Eftelioglu, Jiang, Ali, & Shekhar, 2016; Halstead, Kober, &
Zwaan, 2014) in energy-water nexus space. In order to make advancements in modeling
more accurate and reliable predictions for decision-making, investments and planning, it
is required to take the integrated approach which not only consists of these individual
resource systems but also the interconnection, interaction and interdependencies of
these systems (Eftelioglu et al., 2016). Different modeling techniques can be used for
modeling and forecasting of water and energy resources in the nexus. These techniques
can be either classified as – process based or data driven. Process based is a mathematical
based technique that provides detailed representation and interpretation of the under-
lying processes between variables within a system through scientific principles
(Oyebode, Otieno, & Adeyemo, 2014). In contrast, data driven techniques uses data to
capture the relationship between variables of the system without requiring any form of
description of the physical processes within a system. Process based techniques has the
advantage of increased validity and utility of models since they are based on scientific
principles and laws by which we get the deep understanding of the underlying pro-
cesses (Oyebode et al., 2014; Solomatine and Ostfeld, 2008). The drawback of these
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techniques are that they are computationally expensive, takes time and has several
underlying problems of miscalibration, parameter instability that leads to uncertainty in
the predictive outcome (Oyebode et al., 2014). On the other hand, data driven techni-
ques are relatively easier and quicker to develop. In addition, these techniques have also
proven to be useful in quantifying uncertainty (Mentch & Hooker, 2016; Tiwari &
Adamowski, 2017; Wani, Beckers, Weerts, & Solomatine, 2017) that is present in pro-
cess-based techniques. The disadvantage of these techniques is that it requires sub-
stantial useful data to get good prediction results. Use of process based modeling gives
reliable and better prediction results in situations where we have complete knowledge
of the system, however, there are fields such as streamflow modeling (Galelli &
Castelletti, 2013), hydrologic forecasting (Bhagwat & Maity, 2013) where there is lack
of complete physical and operational understanding of the target system. In such cases,
adopting data driven approaches will be better in making predictions (Kim, Kang, Choi,
& Kim, 2017).

In the past, process based models (Baki & Makropoulos, 2014; Fang & Chen, 2017;
Siddiqi, Kajenthira, & Anadón, 2013; Spang & Loge, 2015; Tidwell & Pebbles, 2015) have
been used to make observational predictions for different interacting resources for this
nexus. The study (Dai et al., 2018) presented a review of some process-based tools and
methods used relative to different geographic scales and nexus scope. As the energy
and water data that is collected by agencies through surveys, reports and other tech-
niques are becoming accessible (Chini & Stillwell, 2016; EPSA-DOE, 2017; Maupin et al.,
2014), there is a need to apply data-driven techniques, specifically, machine learning
techniques in modeling interaction of resources in the energy-water nexus system.

1.1. Organization and scope

The purpose of this article is to introduce the current challenges and opportunities
posed by energy-water nexus to machine learning research community. In addition to
this, we surveyed different machine leaning techniques that have been used in solving
problems related to energy-water nexus. The remainder of the paper is organized as
follows – Section 2 describes both the data and machine learning challenges that
typically present the obstacle in carrying out analysis in the energy-water nexus space.
Section 3 describes the machine learning approaches that has been employed in the
past within energy-water nexus scope and varying spatial and temporal scales. The goal
of this review is to provide an overview of machine learning based research that has
been done in the context of understanding energy water nexus. Most of the existing
work has dealt with the individual resources – energy and water independently, that is,
understanding patterns related to energy consumption or water consumption. On the
other hand, limited work has been focused on the actual interaction between the two
resources like energy related water use and water related energy use. Our objective is to
survey existing methods that has been used within the scope of energy-water space and
then outline the opportunities for applying these methods to better understand the
interaction aspect in the nexus. Section 4 present the future machine learning directions
and opportunities that may prove to be beneficial for machine learning researchers in
advancing to develop novel techniques and solutions in solving major energy water
nexus problems. Section 5 concludes by discussing about the potential and effective
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collaboration of researchers, stakeholders relevant to machine learning and energy-
water nexus.

2. Challenges

While energy and water have been considered as individual entities, improving one
resource and ignoring other will not be sufficient in solving problems related to other
systems (Hoff, 2011; Mohtar & Daher, 2012; Scott, Kurian, & Wescoat, 2015; Scott et al.,
2011). Water resources have been under stress due to water availability and seasonal
variations (DOE, 2014; Oki & Kanae, 2006). In addition, the effects of climate change like
increasing average temperature, uneven shifting of precipitation patterns, and frequent
occurrence of extreme climate events like floods and droughts greatly impacts water
predictability and availability of water resources across regions (Cosgrove & Loucks, 2015).
Variabilities of water and climate along with population growth could further enhance
competition for water resources that would negatively impact energy production and
distribution (DOE, 2014). Simultaneously, energy production and use also largely affects
climate because of the combustion of fossil fuels which contributes to greenhouse gases
emission to the atmosphere subsequently increasing the surface temperature gradually
affecting climate variations (Nanduri and Saavedra-Antolínez, 2013; Rothausen & Conway,
2011) The amount of energy required for water extraction, distribution, use and treatment
also varies on different location scales. It is largely dependent on the location of water
sources, quantity, and quality of water to be extracted and treated respectively, level of
water consumption among others (Healy et al., 2015).

In order to better manage and sustain future water and energy resources, it is
important for key policy and decision makers to develop decision support tools that
can handle these variations and uncertainties, which arises due to either interac-
tions between natural and human systems or from the variability of climate (DOE,
2014; Healy et al., 2015). The long-term investments and planning that are either
currently under progress or are in the making by different states and federal
agencies is often limited in scope since there is continuous shift in constraints
and risks associated with economic, technical and environment sustainability.
Understanding the links among climate change, water and energy requires some
insights into past and future patterns, however, this insight can be difficult to
develop (Burkett et al., 2013). Machine learning provides better techniques in
understanding these links of energy, water, and climate, and efficiently analyze
and predict future estimates on water and energy availability through observing
data related to climate change and water-energy system interactions. Although, at
this point, it might look useful to follow various machine learning approaches
(Kotsiantis, Zaharakis, & Pintelas, 2007; Kulis et al., 2013; Michalski, Carbonell, &
Mitchell, 2013), it is always important to consider the challenges and issues that
could hinder in making progress to applying machine learning in energy-water
nexus. Below are some of the challenges that machine-learning researchers may
face in tackling problems relating to predicting, analyzing or visualizing the water
and energy system interdependencies.

BIG EARTH DATA 231



2.1. Data challenges

The data that is available to us doesn’t meet the standard requirements to perform
analysis as it is quite scattered and requires a significant amount of synthesis (Elliott
et al., 2000). In order to perform any data analysis, it is important to have the data to
possess certain quality of usability and adequate spatial and temporal resolution. Data
comes from varied heterogeneous sources and are not spatially or temporally uniform.
Agencies like EIA and USGS has collected energy and water data that are of varying
spatial and temporal resolution which understandably poses some difficulties to model
the interaction in energy-water nexus. Consequently, we need to bring it to common
resolution in order to perform relevant integration and analysis. Below are some of the
major challenges faced through data encountered in relation to energy-water nexus:

(1) Missing data Many available data sets in the energy and water space are covered
with incompleteness and uncertainty as the reporting of data is not uniform over
the years and contains missing values (EPSA-DOE, 2017). Additionally, the uncer-
tainty in the data sources can propagate through machine learning algorithms to
the prediction variable. This provides us with a challenge to leverage techniques
that quantify the uncertainty in the outcome of the variables of interest.

(2) Spatio-temporal data Data for energy-water nexus comes from different disparate
sources with varying spatial and temporal scale (EPSA-DOE, 2017). For example, in
reference to spatial scale, EIA provides data related to water withdrawal for
thermoelectric cooling based on individual plant sites while USGS provides the
same data at state level (EPSA-DOE, 2017). In reference to temporal scale, USGS
collects water withdrawal every five years (Maupin et al., 2014) while EIA collects
monthly water withdrawal data (EIA-DOE, 2011). Data varying in spatial and
temporal scales will pose difficulties in carrying out integrated analysis and so it
is important for data to have uniform or harmonized resolution scale.

(3) Heterogeneity in data Analyzing the interactions between the resources in this
nexus visually also presents a challenge of dealing with heterogeneity of data
being present in different spaces. For instance, ocean and underground data is
presented in 3D Euclidean space while stream flow data is presented in 2D space,
therefore, visualizing the interactions for heterogeneous dimensional-spaced
resources needs to be handled accordingly (Eftelioglu et al., 2017).

(4) Data collection standards and data availability In energy-water nexus, there is not
a uniform or standard approach for data collection. For example, in United States,
energy and water data is largely collected through different ways among federal
agencies. EIA uses plant survey responses for procuring information on water
withdrawal in a thermoelectric power generation facility while USGS collects
water withdrawal data through aggregating data from different sources including
plant specific withdrawal data through EIA, state water agencies and USGS model-
estimated withdrawal data which is often a cause of discrepancy in available data
(EPSA-DOE, 2017). Furthermore, Harris & Diehl, 2017 compared three different
federal data sets for thermoelectric water withdrawal in 2010 and reported large
difference in the total water withdrawal among the datasets. Temporal variations
in energy and water data related to wastewater and water utility data impedes
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decision-making opportunities (Chini & Stillwell, 2016). The cause of such varia-
tions and discrepancies arises from variations in definition of terms and methods
applied for data collection.

2.2. Machine learning challenges

To tackle the energy-water nexus challenges, it is often important to understand and
define the behavior of earth system in an integrated manner. This requires a better and
efficient modeling approach of interacting entities of this nexus like energy related use
in water treatment or water related use in energy extraction. With the rapid rise and
improvement in data availability in different domains related to earth, natural and
geological sciences (Nexus, 2009), it is important to adopt data-driven modeling
approach for which use of machine learning techniques is an optimal strategy.
Modeling interactions between water and energy through machine learning poses
certain machine learning challenges that are:

(1) Modeling spatio-temporal data Spatio-temporal data comprises of spatial and
temporal autocorrelation that can be seen in several studies (Hardisty &
Klippel, 2010; Reynolds & Madden, 1988). The important challenge of employ-
ing machine learning in energy-water nexus is to deal with data that involves
multiple spatial and temporal scales. For example, water consumption in
California varies both spatially and temporally GEI Consultants/Navigant
Consulting, 2010). Water and energy systems have different spatial and tem-
poral characteristics and therefore, it presents a difficult task to model the
interactions between different variables of these systems keeping in mind the
required synchronization of varying scales with paucity of data and large
uncertainties (Khan et al., 2018). Moreover, many widely used machine learning
methods assume the principle of independent and identically distributed
principle which will not be the case when we would deal with data exhibiting
spatio-temporal characteristics and autocorrelation effect (Shekhar et al., 2015).
Another issue could be while integrating multiple models that works at differ-
ent spatio-temporal scales. Moreover, the created models that operates on a
specific spatio-temporal scale can differ from the scale used while collecting
observed data (Eftelioglu et al., 2016).

(2) Modeling in presence of missing data Missing data is one of the most commonly
seen problem in datasets in data mining (Witten, Frank, Hall, & Pal, 2016).
Learning and building predictive models for water-energy interactions in the
presence of missing values will be another challenge. Employing supervised
machine learning algorithms requires known data observations (training data)
which includes input variables and target variable. In the absence of enough
training data, the machine learning model either will face the problem of
underfitting (high bias) or overfitting (high variance). Using process-based
model output can prove to be beneficial in handling problems related to
missing data (Li, Pan, Zhao, & Yu, 2018).

(3) Identifying outliers Identifying outliers or anomalies and learning in presence of
these outliers will be an important task in discovering knowledge in energy-water
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nexus. Outliers or anomalies are defined as the instances which has considerable
deviation from the majority or normal group of instances (Barnett & Lewis, 1974;
Chandola, Banerjee, & Kumar, 2009). The occurrence of outliers can be attributed
to:
(i) Imperfect collection methods/sensors: This occurs when a data is imperfectly

labeled due to data corruption, noise, or uncertainty (Liu, Xiao, Cao, Hao, &
Deng, 2013; Liu, Xiao, Philip, Hao, & Cao, 2014). Moreover, an imperfectly data
point can be treated as an outlier, although that data point may not actually
be an outlier.

(ii) Extreme events: An outlier can occur due to an extreme event when its
statistical properties do not confirm with the remaining bulk of data (L’vov,
Pomyalov, & Procaccia, 2001).

Using machine learning algorithms in the presence of these outliers can give us
inappropriate and misleading results. Presence of outliers can be a problem in both
supervised (Zhang & Yang, 2003) and unsupervised learning (Witten, 2013) as it
degrades the learning model performance drastically (Bi & Jeske, 2010; Michalek &
Tripathi, 1980). Different anomaly detection techniques are used for different appli-
cation domains and the use of any specific anomaly detection technique depends
on the nature of the input data and type of desired anomaly (Chandola et al.,
2009).

In energy-water nexus, using machine learning techniques in detecting outlier among
different application entities can be relevant and useful in making improvement to
economy and development of sustainable resources in the future. For example, detect-
ing water leaks in water distribution (Martini, Troncossi, & Rivola, 2015; Martini,
Troncossi, Rivola, & Nascetti, 2014; Yazdekhasti, Piratla, Atamturktur, & Khan, 2017) is
important in order to minimize water losses. Another example can be detecting anoma-
lies in water treatment facilities (Haimi et al., 2016) adaptive that can guide us in
improving the energy use in these facilities.

(4) Handling imbalance datasets In the energy-water nexus space, it will be important
to take account of imbalanced datasets when using any supervised or unsupervised
learning. In the supervised case, using regression algorithms in imbalanced sets scenario
has been vastly unexplored even though the problem commonly occurs in other
applications such as crisis management, economy, fault diagnosis, etc. that requires us
to predict extreme or anomalous values for continuous target variable (Krawczyk, 2016).
This can be a problem when, for instance, trying to find rare or extreme continuous
values of energy required in water extraction and distribution or water required in
cooling thermoelectric power plants. In the unsupervised case (Nguwi & Cho, 2010),
especially clustering, there is an inherent difficulty for clustering based approaches such
as centroid based (Wang & Chen, 2014) or density based (Tabor & Spurek, 2014) to be
effective when underlying groups of data have varying sizes. This can be a problem
when we are clustering groups of regions based on some similarity of interaction
exhibited by energy used in water supply or water treatment. In this case, there can
be different sized group of regions that exhibit similar trends.
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(5) Uncertainty propagation Climate variability greatly impacts regional water supply
and stream temperatures which in turn affects energy generation. In addition, this
variability (Deser, Knutti, Solomon, & Phillips, 2012) is nonstationary in nature and is
rooted with deep uncertainty (Hallegatte, Green, Nicholls, & Corfee-Morlot, 2013).
Reliability of prediction model decreases as we predict further in the future
(Gligorijevic, Stojanovic, & Obradovic, 2016; Smith, 2013) due to accumulated error of
iterative predictions. As a result, there is an increase in estimated uncertainty of model
predictions. Considering the reliability of estimate of a prediction model, It is important
to take account of proper uncertainty propagation estimate for reasoning under uncer-
tainty (Gligorijevic et al., 2016) in making predictions.

3. Machine learning techniques used in the energy-water nexus

In the context of energy-water nexus, use of machine learning approaches have
been minimal in modeling water-energy interactions as techniques like artificial
neural networks and support vector machines has been used while considering
water or energy as independent resource system. In this section we will survey the
different machine learning techniques that have been used within the scope of
energy-water nexus space. The learning techniques have been classified under –
Supervised learning, Unsupervised Learning, Reinforcement learning. In the survey we
provide two, interlinked, organizations. First organization follows the typical cate-
gories of machine learning approaches, while the second organization follows the
different types of target problems within the energy-water nexus scope. Table 1
shows the overview of machine learning techniques that has been used within the
scope and space of energy-water nexus. In the table, the leftmost column com-
prises of different target problems related to energy-water nexus. These target
problems can be described as:

● Energy generation – modeling the quantity or intensity of energy produced by
various non-renewable (fossil fuels such as natural gas, coal, petroleum, etc.) or
renewable (biomass, solar energy, wind energy, hydropower) sources.

● Energy use – modeling the quantity or intensity of energy consumed in residential,
industrial or commercial sector.

● Water use – modeling the quantity of water consumed in residential, industrial or
commercial sector.

● Energy for water – modeling the flow of energy required in water extraction,
supply, treatment or use.

Table 1. Overview of machine learning techniques used in energy-water nexus.
Target Problems Supervised Learning Unsupervised Learning Reinforcement Learning Ensemble Learning

Energy generation Table 2 – – Table 5
Energy use Table 2 Table 4 – Table 5
Water use Table 3 Table 4 – Table 5
Energy for water Table 3 Table 4 – –
Water for energy Table 3 Table 4 Section 3.4 –
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● Water for energy – modeling the flow of water required in energy production or
use.

In addition to the above, in the table, we have also provide navigable links to
different tables/sections that illustrates different machine learning techniques used for
target problems within the context of energy-water nexus space. These survey of
techniques spans varying temporal and spatial scales and are not limited to any specific
scale.

3.1. Supervised learning

Supervised learning approaches have been widely used in many application domains
(Witten et al., 2016). The principle behind supervised learning approach is to learn the
mapping function f : x 7!y that maps input x to output y. Input variables x consists of
one or more independent variables or predictors while output consists of independent
variable or predictand y. The learning is done by applying machine learning algorithm
on the “training data” by which we get the learned model as the output. We then test
this model on the new set of data often called “test data” or unseen data in order to get
prediction of output or target variable for that data. In the context of energy-water
nexus space, supervised learning approaches have been used in different water and
energy resource systems. Major supervised learning techniques that have been used in
energy water nexus comprises of regression analysis, Artificial Neural Networks (ANN),
Support Vector Machines (SVM) and time-series analysis. Tables 2 and 3 shows some set
of supervised techniques that have been used in the past for predicting individual
energy and water resource systems.

Table 2. Supervised learning techniques in energy generation and use.
Technique Energy generation Energy use

ANN (Brown & Matin, 1995)
(Suykens et al., 1996)
(Khotanzad & Elragal, 1999b)

(Gomes & Castro, 2012) (Tso & Yau, 2007)
(Bugal-a et al., 2018) (Geem & Roper, 2009)

(Sabo et al., 2011)
(DEMI˙REL et al., 2012)
(Ahmad et al., 2014)
(Zhang & Yang, 2015)

SVM (Mohandes et al., 2004) (Ahmad et al., 2014)
(Sharma et al., 2011)

Regression (Parikh et al., 2007)
(Abuella & Chowdhury, 2015) (Tso & Yau, 2007)
(Dedgaonkar et al., 2016) (Sabo et al., 2011)

(DEMI˙REL et al., 2012)
(Taspnar et al., 2013)
(Bianco et al., 2014)

Time series (Hill et al., 2012) (Dilaver et al., 2014)
(Huang et al., 2012) (DEMI˙REL et al., 2012)

Decision trees (Tso & Yau, 2007)
– (Al-Gunaid et al., 2016)
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3.1.1. Regression analysis
Regression analysis is a supervised learning technique that is based on estimating the
relationship between one dependent (y) with one or more independent variables (x).
There are different forms of regression techniques which is based on number of
independent variables, type of dependent variables and the complexity of relationship
being modeled between these variables.

In energy-water nexus studies, regression is employed in estimates of cooling water
needed for thermoelectric generation, wastewater treatment plant flowrate and energy
use, and forecasts of regional energy and water demand. For example, Cook, King,
Davidson, and Webber (2015) estimate monthly average cooling water intake tempera-
ture for thermoelectric power plants for each month using ambient dry bulb air
temperature, dew point, intake temperature of the previous month, average wind
speed for the month, and temperature of the cooling water discharged from the
upstream plant.

Regression models have been further used in predictions of energy use in various
other studies (e.g. Al-Garni, Zubair, & Nizami, 1994; Egelioglu, Mohamad, & Guven, 2001;
Ranjan & Jain, 1999; Tso & Yau, 2003; Yan, 1998). Regression analysis is used in (Herbert,
Sitzer, & Eades-Pryor, 1987) to explore the temporal patterns and impact of heating days,
natural gas price, resident fuel oil price, and industrial activity on natural gas demand in
industrial sector. Modified multiple regression techniques are employed in (Lee & Singh,
1994) in order to analyze the micro-consumption electricity and gas data and identify
the patterns in residential and electricity consumption. Regression-based techniques
(Carlson & Walburger, 2007), such as Ordinary Least Squares (OLS), are employed for
predicting energy use in a wastewater treatment plant. An example of this approach is
the Energy Star method carlson2007energy in which energy consumption of 257 waste-
water facilities across the United States is predicted using a regression model based on
plant characteristics given measured plant data. Molinos-Senante, Sala-Garrido, & Iftimi,
2018 used regression analysis to model the Energy intensity (EI) of 335 wastewater

Table 3. Supervised learning techniques in energy for water, water for energy and water use.
Technique Energy for water/Water for energy Water use

ANN (Jain et al., 2000)
Water for energy (Bougadis et al., 2005)
(Sauhats et al., 2016) (Msiza et al., 2007)

(Suh, Kim, & Kim, 2015)
SVM Energy for water (Chen & Zhang, 2006)

(Zeng, Cai, Ringler, & Zhu, 2017) (Tu-Qiao, 2006)
(Vitter & Webber, 2018 (Msiza et al., 2007)

Regression Water for Energy
(Cook et al., 2015) (Oh & Yamauchi, 1974)

(Tinker, Bame, Burt, & Speed, 2005)
Energy for water (Zhang & Brown, 2005)
(Carlson & Walburger, 2007) (Schleich & Hillenbrand, 2009)
(Spruston, Kolesov, & Main, 2012)
(Molinos-Senante et al., 2018)

Time series (Miaou, 1990)
– (Jowitt & Xu, 1992)

(Arandia, Ba, Eck, & McKenna, 2015)
(Al-Zahrani & Abo-Monasar, 2015)
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treatment plants (WWTPs) that were grouped into five WWTP secondary treatment
technologies.

The study (Maidment & Parzen, 1984) explores the combination of regression and
time series analysis technique for forecasting monthly water demand, while Franklin &
Maidment, 1986 use a cascading time-series model approach incorporating long term
trend, seasonal cycle, autocorrelation and correlation with rainfall, and evaluate added
accuracy with each component. Multivariate statistics models (Arbués et al., 2003;
Dalhuisen, Florax, De Groot, & Nijkamp, 2003; Espey, Espey, & Shaw, 1997) forecast
long-term water demand by estimating the statistical relationship between per capita
consumption and set of predictors such as cost of water, household income, housing
characteristics, weather change, etc., yet these models suffer from lack of out-of-sample
predictive capacity (Fullerton & Molina, 2010). Predictions on this scale are subject to
large uncertainty due to changes in long-term precipitation patterns, variability in water
Â± consumption patterns, and shifts in regional population, demographics and econom-
ics. Regression analysis along with time series have been frequently used short-term
water demand forecasting. For example, Jain, Joshi, & Varshney, 2000 and Maidment,
Miaou, & Crawford, 1985 use multivariate time series techniques for daily urban water
forecasting, whereas Smith, 1988 develops a time series model for short-term forecast-
ing of municipal water demand that accounts for long-term trend, seasonality and day-
of-week effects.

Linear regression has been used in Geem & Roper, 2009 to forecast energy consump-
tion in South Korea with predictors including gross domestic product, population,
imports amount and exports amount; predictors for energy demand in India in Parikh,
Purohit, & Maitra, 2007 were size and population; and gas demand in Italy was predicted
by Bianco, Scarpa, & Tagliafico, 2014 with GDP per capita, price, and temperature. In
Sabo, Scitovski, Vazler, & Zekić-Sušac, 2011, other advanced linear and nonlinear regres-
sion techniques for forecasting hourly energy consumption were used including expo-
nential (Y ¼ abx), Gompertz (R ¼ abc

T
) and logistic (e.g. σðtÞ ¼ 1

1þe�t ) models. Predictive
data included past energy consumption, temperature, and temperature forecasts.

In the recent past, regression models has also been employed in forecasting renew-
able energy generation. Diagne, David, Lauret, Boland, & Schmutz, 2013 reviewed some
statistical models and machine learning models used in solar irradiance forecasting. The
study (Abuella & Chowdhury, 2015) used multiple linear regression analysis in order to
generate probabilistic forecast of solar energy. Dedgaonkar, Patil, Rathod, Hakare, &
Bhosale, 2016 used linear least square regression technique to predict solar intensity
with months, temperature, dew point, wind speed, total amount of cloud, and humidity
as independent variables.

Traditional regression based techniques like Ordinary Least squares (OLS) regression
have limitations such as inability to model data that has variables that are spatial
autocorrelated and spatial non-stationary (Fotheringham, Brunsdon, & Charlton, 2003).
To overcome these limitations, Geographically Weighted Regression (GWR) has been
effectively employed in overcoming restrictive assumptions of OLS (Fotheringham et al.,
2003) by explaining spatially varying relationships in variables by allowing the variations
in model parameters over space. Several studies (Brown et al., 2012; Chen et al., 2016;
Javi, Malekmohammadi, & Mokhtari, 2014) have shown that GWR performs better than
OLS in the presence of spatially variations in data.
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Analyzing varying spatiotemporal relationship between groundwater quantity
changes and land use types through GWR for Khanmirza plain, Iran is presented in
Javi et al., 2014. This involved the comparison of OLS and GWR models and it was found
that GWR performs better than OLS based on coefficient of determination, R2 and
corrected Akaike’s information criterion AICc. Moreover, based on the analysis of spatial
autocorrelation (Moran’s I statistics), it is found that GWR performs better in modeling
spatially varying data. Despite the advantages of GWR, there is an issue of multicolli-
nearity among independent variables in GWR (Wheeler & Tiefelsdorf, 2005). In Chen
et al., 2016, while investigating the impacts of land use and population density on
surface water quality in both dry and wet seasons in the Wei-Rui Tang river watershed of
eastern China using GWR, a manual variable excluding-selecting method is used to
resolve the issue of multicollinearity.

3.1.2. Artificial neural networks
Artificial Neural Networks is an important supervised machine learning algorithm and is
one of the powerful algorithm because of its ability to learn any functional relationship
between one dependent and one or more independent variables. Moreover, it handles
non-linear data effectively because of the use of activation functions. The purpose of
activation function such as sigmoid, ReLU and tanh is to effectively handle the nonlinear
relationship between the output variable and input variables. A typical ANN architecture
consists of two layers (one hidden layer and one output layer). Conventionally, we don’t
count input layer as an actual layer and therefore we always see a two-layer neural
network as shown in (Figure 1).

Use of ANN has proved to be helpful in efficiently estimating the groundwater levels
as compare to hydrologic simulation methods (Dash, Panda, Remesan, & Sahoo, 2010;
Sahoo & Jha, 2013; Sahoo, Russo, Elliott, & Foster, 2017). The results from this hybrid
ANN method showed that complex, nonlinear relationships among precipitation, tem-
perature, streamflow, climate indices, irrigation demand, and groundwater levels could
be represented and reproduced with the method. ANN has been used by Jain & Kumar,

Figure 1. Artificial neural network schematic.
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2007 and Bougadis, Adamowski, & Diduch, 2005 to forecast water demand for monthly
and weekly lead time respectively. ANNs has also been used in forecasting of energy
generation from other renewable source like hydropower (French, Krajewski, &
Cuykendall, 1992; Hammid, Sulaiman, & Abdalla, 2018; Lin & Chen, 2004; Luk, Ball, &
Sharma, 2000; Pan & Wang, 2004; Ramirez, de Campos Velho, & Ferreira, 2005) and wind
power (Barbounis & Theocharis, 2007; Hervás-Martínez et al., 2009; Kariniotakis,
Stavrakakis, & Nogaret, 1996; Li & Shi, 2010; Welch, Ruffing, & Venayagamoorthy,
2009). Gomes & Castro, 2012 focused on predicting wind speed and power by statistical
models like Artificial neural networks (ANN) and AutoRegressive moving average (ARMA)
and concluded that ARMA, despite being more time consuming, performed better than
ANN in terms of forecasting accuracy. Bugała et al., 2018 used ANN in short-term
forecasting of electric energy from photovoltaic conversion. The independent variables
(number of sunny hours, length of the day, air pressure, maximum air temperature, daily
insolation, cloudiness) were selected on the basis of Pearson linear correlation coeffi-
cients. In Sauhats, Petrichenko, Broka, Baltputnis, & Sobolevskis, 2016, ANN has been
used to hourly forecast hydropower reservoir inflow of a hydropower reservoir in Latvia
using temperature, precipitation and historical water inflow.

Various types of neural networks are used in energy use analysis including feedfor-
ward networks and backpropagation networks. In Brown, Kharouf, Feng, Piessens, &
Nestor, 1994; Brown & Matin, 1995 energy consumption is predicted using a feedforward
network. Suykens et al., 1996 use a static non-linear neural network model to predict
energy consumption. The work (Khotanzad & Elragal, 1999a) proposed a two-stage
system for gas demand forecasting, the first stage comprising three ANN forecasters: a
multilayer feed-forward network trained with backpropagation, a multilayer feedforward
network trained with the Levenberg-Marquad algorithm, and a one-layer functional link
network; and the second stage consisting of the nonlinear link functional ANN container
which combines the three ANN forecasters of first stage. A similar two-stage approach
was reprised in Khotanzad, Elragal, & Lu, 2000 in which the first stage combined two
ANN forecasters with different topologies. The first forecaster is a multilayer feedforward
architecture while the second one is a functional link ANN. In the second stage, the two
individual forecasters of the first stage are combined together in order to achieve the
final forecasting. Overall to achieve this, the authors explored eight different combina-
tion strategies – averaging, recursive least squares, fuzzy logic, feed-forward ANN,
functional link ANN, temperature space approach, linear programming algorithm and
modular neural networks.

Genetic algorithms (GA), based on a natural selection process that mimics biological
evolution1, are often used in conjunction with neural networks and other models to
solve optimization problems. Because most of the other existing parameter estimation
methods require additional information and are difficult to manage in practical applica-
tions, GA emerges as a better tool than other methods (e.g. direct search methods,
Hooke-Jeeves method, Nelder-Mead method, gradient method) for estimating para-
meters in a non-linear regression models (Faradonbeh, Monjezi, & Armaghani, 2016;
Nash & Walker-Smith, 1987; Nguyen, Reiter, & Rigo, 2014a; Pan, Chen, Kang, & Zhang
1995). In Pelikan & Simunek, 2005, genetic algorithms are used to optimize risk manage-
ment of natural gas consumption to minimize losses of and maximize the profits of a
particular gas distribution company. Aras, 2008 and Ervural, Beyca, & Zaim, 2016 present
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short-term forecasting of residential natural gas demand using genetic algorithms. In
Forouzanfar, Doustmohammadi, Menhaj, & Hasanzadeh, 2010, an approach to forecast
natural gas consumption for residential and commercial sectors by estimating the
logistic parameters is performed using two different methods: non-linear programming
and genetic algorithms.

GA has also been actively used in hydrological resource planning and management
(Nicklow et al., 2009; Rani & Moreira, 2010). The study (Rani, Jain, Srivastava, & Perumal,
2013) presents an overview of GA applications to water resource problems such as
optimization of water distribution system and reservoir system operation. In the recent
past, Abkenar, Stanley, Miller, Chase, & McElmurry, 2015 used genetic algorithms for
optimization of pump schedules in water distribution systems. Bi, Dandy, & Maier, 2015
proposed a new heuristic sampling method in improving the efficiency in application of
genetic algorithm to water distribution systems. Wafae, Driss, Bouziane, & Hasnaoui,
2016 used genetic algorithm for optimization of operation in reservoir system in
Morocco. Tayebiyan, Ali, Ghazali, & Malek, 2016 explored the use of genetic algorithm
in optimizing reservoir operations under different water release policies in Cameron
highland hydropower system, Malaysia.

3.1.3. Support vector machines
Support vector machine is the powerful supervised learning technique that is used for
both classification and regression. Supervised learning approaches to prediction of solar
power generation included use of linear least squares regression and support vector
machines (SVM) using three different kernels – linear kernel, polynomial kernel, and
radial basis function (RBF) kernel (Hossain, Oo, & Ali, 2012). The use of SVM with kernel
functions is to map nonlinear data from input space to a higher dimensional space to
make it linearly separable. The use of this kernel trick in SVMs have been further
explored not only in other domains (Mohandes, Halawani, Rehman, & Hussain, 2004;
Pai & Lin, 2005) but also in rainfall forecasting (Hong, 2008; Wang, Xu, Chau, & Chen,
2013) since hydropower generation is subjected to external factors like patterns in
precipitation. Support vector machines (SVM) (Chang, 2014; Zeng & Qiao, 2011) has
been applied successfully to short-term wind power forecasting. In addition to wind
speed predictions, SVMs are applied to future water availability estimates and air and
water quality prediction (Wang, Xu, & Weizhen, 2003). Linear least squares regression2

techniques and SVM are used by Sharma, Sharma, Irwin, & Shenoy, 2011 to predict solar
power generation based on weather forecasts. The potential of circuit-level electricity
data for major household appliances such as clothwasher and dishwasher in water end
use disaggregation is presented in Vitter & Webber, 2018. This involved an attempt to
align electricity consumption data in the disaggregation tool. To classify water events,
two different support vector machine classification models were used. The first model
used input data with two features event volume and event duration. The second model
used these features along with two more features that indicating coincident electricity
consumption by a clothwasher or dishwasher. These additional features were used in
order to address the problem of overlapping water events (Vitter & Webber, 2018) and
unrelated water consumption events.
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3.1.4. Decision trees
Decision trees are a supervised machine learning method used for classification and
regression. The deeper the tree, the more complex the decision rules and the more fit
the model.3 The advantages of this technique includes easy to understand, interpret and
visualize while the disadvantages includes high variance that leads to overfitting pro-
blem. Energy use is also predicted using decision trees (Al-Gunaid, Shcherbakov,
Skorobogatchenko, Kravets, & Kamaev, 2016; Tso & Yau, 2007). Decision tree models
can produce rules or logic statements that are easy to interpret, but they don’t perform
as well as Neural Networks for non-linear data and they tend to be susceptible to noise
(Curram & Mingers, 1994).

3.1.5. Time series analysis models
Use of time series models that typically includes Box-Jenkins models have been pre-
sented in several studies related to forecasting energy demand. For example, ARIMA is
used in forecasting monthly or annual natural gas consumption in Akkurt, Demirel, &
Zaim et al., 2010 and Erdogdu, 2010. Additionally, Akkurt et al., 2010 show that an
extension of ARIMA, seasonal autoregressive integrated moving average (SARIMA), can
outperform the other models for monthly forecasting, and that further double expo-
nential smoothing can produce optimal results for annual forecasting. The Structure
Time Series Model (STSM) is also employed to forecast annual energy demand (as in
Dilaver, Dilaver, & Hunt, 2014, which includes in its analysis the effect of various
determinants such as income, natural gas price, and underlying energy demand trends
(1978–2011) on natural gas demand. A STSM is a model formulated directly in terms of
components of interest in a time series, and which has a direct interpretation. In such a
model, the trend component is flexible enough to allow response to changes in the
general direction, the seasonal component can respond to changes in the seasonal
pattern, and these components are treated as stochastic–driven by random disturbances
(Harvey, 1990).

The study (Hill, McMillan, Bell, & Infield, 2012) presented the application and use of
univariate and multivariate Autoregression Moving Average (ARMA) models to geogra-
phically dispersed wind speed data in forecasting wind power. Huang, Huang, Gadh, &
Li, 2012 used Autoregression Moving Average (ARMA) and persistence model to forecast
future solar generation within the region of University of California, Los Angeles (UCLA).
While evaluating the models, ARMA was found to be performing better in short- and
medium-time forecasting while persistence model performed better under very short
duration.

3.1.6. Comparative analysis of supervised techniques
The supervised learning techniques are often compared for the same problem in order
to evaluate the techniques on prediction accuracy and generalizability error. The study
(Khan & Coulibaly, 2006) presents a performance comparison of SVM, ANN, and tradi-
tional seasonal autoregressive model (SAR) in forecasting of water level of a lake. In this
case, SVM was shown to be competitive with the other two methods. The study (Herrera,
Torgo, Izquierdo, & Pérez-Garca, 2010) compared the performance of different models:
artificial neural networks (ANN)) (Bishop, 1995; Bougadis et al., 2005; Maier & Dandy,
2000; Zhang & Qi, 2005), projection pursuit regression (PPR) (Dahl & Hylleberg, 2004;

242 S. M. A. ZAIDI ET AL.



Friedman & Stuetzle, 1981; Storlie & Helton, 2008a), multivariate adaptive regression
splines (MARS) (Friedman & Stuetzle, 1981; Hastie & Tibshirani, 1990; Moisen & Frescino,
2002), support vector regression (SVR) (Cristianini & Shawe-Taylor, 2000; Karatzoglou,
2006; Karatzoglou, Meyer, & Hornik, 2005; Smola & Schölkopf, 2004; Vapnik, 2013; Vapnik
& Vapnik, 1998), random forests (Breiman, 2001), and a weighted pattern-based model
(Alvisi, Franchini, & Marinelli, 2007; Härdle, Liang, & Gao, 2012; Herrera et al., 2010) used
for short-term water demand forecasting for a south-eastern city in Spain. Predictors
used for the comparison were water demand at current hour, previous hour, and target
hour in previous week; temperature; wind velocity; atmospheric pressure; and rainfall.
Monte Carlo estimation method is used to evaluate the models on the data. The Monte
Carlo methods depends on the repetition of a simulation experiment to obtain estimates
of any variable. Results of the Monte Carlo comparisons for all of the models showed
that SVM, Random Forests, PPR and MARS perform better than ANN and the weighted
pattern-based model. In light of these results, Tu-Qiao, 2006 and Chen & Zhang, 2006
propose a added Bayesian (predictions made based on prior knowledge) and a least
squares SVM, respectively, for forecasting hourly demand. A comparative study (Msiza,
Nelwamondo, & Marwala, 2007) is presented that compares the performance of artificial
neural network (ANN) and support vector machine (SVM) for forecasting water demand
and is observed that the ANN performs better than SVM in better generalizing the
unseen data.

The study (Danades, Pratama, Anggraini, & Anggriani, 2016) compares a non-para-
metric K-Nearest Neighbor (KNN) algorithm and a SVM algorithm in the classification of
water quality. It starts by defining a pollution index based on parameters established in
previous research. Next, they categorize the dependent variable (predictand) using
labels: Good Condition, Lightly Polluted, Medium Polluted and Heavily Polluted. They
characterize the independent (predictor) variables with attributes: Total Suspended
Solids (TSS), Dissolved Oxygen (DO), Chemical Oxygen Demand (COD), Biochemical
Oxygen Demand (BOD), Total Phosphate, Fecal Coliform and Total Coliform. Training
and test datasets are apportioned, then the KNN algorithm is run to classify objects
based on the learning data located closest to the object. The learning data are projected
into many-dimensional space in which each dimension represents features of the data.
Next, the Support Vector Machine (SVM) algorithm is run with the data, within a
hypothesis space in the form of linear functions in a high-dimensional feature space
which makes the use of kernel functions. The result of the experiment shows that SVM
performed much better (92.4% accuracy) than the KNN (71.28% accuracy). Several
studies (Adamowski, 2008; Adamowski et al., 2012; Caiado, 2009) have compared ANN
with the traditional linear regression models, finding ANN to produce a better forecast
than the regression models for water demand forecasting.

Daily forecasting of energy consumption is researched in Taspnar, Celebi, & Tutkun,
2013, in which a comparison of the performance of different models is considered with
respect to a specific dataset consisting of air temperature, cloud cover, relative humidity,
atmospheric pressure and wind speed as predictors. Time series analyses performed
include the Box-Jenkins variant, seasonal autoregressive integrated moving average with
exogenous inputs (SARIMAX), and two ANNs, one combined using a radial basis function
(RBF), as its hidden layer, and the other as a multilayer perceptron (MLP), described next.
A MLP is a type of feedforward artificial neural network which consists of at least three
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layers of nodes and uses a supervised learning technique called backpropagation for
training. Results from the Taspnar et al., 2013 study indicate that the MLP architecture
performs optimally on energy consumption given meteorological predictors consists of
five input, eight hidden, and one output neurons.

Comparisons among multiple regression models, time series models (ARMAX) and
artificial neural networks for energy consumption forecasts were made in (Demirel et al.,
2012; Werbos, 1988). Results from one study (Demirel et al., 2012) showed that an
artificial neural network with backpropagation outperforms multiple regression and
the ARMAX model in terms of root mean square error (RMSE) and mean absolute
percentage error (MAPE); however, ARMAX provides the best results in terms of mean
absolute deviation (MAD). The other research study (Werbos, 1988) showed that artificial
neural networks perform much better than time-series and regression models in fore-
casting energy consumption.

Because of the advantages and limitations of all of these approaches, some research-
ers have chosen to combine them. For example, Tso & Yau, 2007 used a stepwise
regression model, a multi layer perceptron model and a decision tree model within
the SAS Enterprise Miner Inc., 2003 statistical framework to determine total weekly
electricity consumption (in KWh) using housing type, household characteristics and
appliance ownership as the potential factors influencing the electricity energy consump-
tion. Input for these models was collected using a questionnaire-diary method covering
the details pertaining to appliances’ ownership and power ratings among participating
households during both summer and winter. Results were compared with the model
performance measure based on the square root of averaged square error (RASE). It was
found that in the summer phase, the decision tree model performs slightly better as
compared to the other models while in the winter phase neural network performs
slightly better than the other two models.

3.2. Unsupervised learning

Unsupervised learning approaches are based on finding hidden structure from unla-
beled data. Unlike supervised learning approach where we have a known labeled data of
input and output variables, in the unsupervised learning we learn the hidden patterns,
associations, similarities between the inputs without any known output variable.
Commonly used techniques of this approach in the energy-water nexus space comprises
of clustering techniques based on hierarchical (Helmbrecht, Pastor, & Moya, 2017; Noiva,
Fernández, & Wescoat, 2016), density (Zhang, Du, Yao, & Ren, 2016) and partitional
(Grubert, 2016; Pastor-Jabaloyes, Arregui, & Cobacho, 2018; Zou, Zou, & Wang, 2015)
clustering method. Other techniques used in energy water nexus are Principal compo-
nent analysis (PCA) citeplam2008principal, ndiaye2011principal and Hidden Markov
models (HMM) (Nguyen, Stewart, & Zhang, 2013a, 2014b; Nguyen, Stewart, Zhang, &
Jones, 2015; Nguyen, Zhang, & Stewart, 2013b). Table 4 shows unsupervised techniques
used within the scope of energy-water nexus.

Hierarchical clustering is used in conjunction with business rule techniques in
Helmbrecht et al., 2017 in developing a solution that monitors water supply systems
for events detection and water resource management thereby increasing the energy
efficiency. Noiva et al., 2016 used hierarchical cluster analysis to analyze water supply
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and demand for 142 cities around the world using MIT Urban metabolism database. This
involved identifying cities having similar characteristics in water and energy demand.
Density-based clustering such as Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) algorithm has been in conjunction with kernel density estimation in
Zhang et al., 2016 for evaluating and clustering maps in the groundwater wells located
in red beds of three regions in China. Use of partitional-based clustering can be seen in
Grubert, 2016, where the authors employed K-means clustering technique for improving
the estimates for comparing hydroelectric power’s water consumption to that of other
energy sources using entire United States population of hydroelectric dams with esti-
mates for net and gross evaporation at national and regional level. Another example of
using K-means clustering can be seen in the study (Zou et al., 2015), based on water
quality analysis of the Haihe River using data obtained by the monitoring network for
the period (2006–2013).

With the growing pace of energy demand, it has become important to manage
energy supply in an efficient manner through monitoring and assessing the pattern of
end energy use. For example, how the information on aggregate household electricity
power consumption can be decomposed at individual appliance level. To answer this,
researchers have developed Non-Intrusive Appliance Load Monitoring (NIALM) algo-
rithms. NIALM based on machine learning methods includes unsupervised learning
algorithms like Hidden Markov Models studied in Johnson & Willsky, 2013; Kolter &
Jaakkola, 2012; Parson, Ghosh, Weal, & Rogers, 2014. Although, these algorithms have
shown good results in energy use disaggregation, they have been limited in handling
appliances in multiple operating modes simultaneously and reconstructing the trajec-
tories of power consumption over time. This limitation has been addressed through a
novel sparse based optimization approach (Piga, Cominola, Giuliani, Castelletti, & Rizzoli
et al., 2016) where disaggregation problem is being treated as least-square minimization
problem with a convex penalty term with information on time-of-day probability for

Table 4. Unsupervised learning techniques used in energy-water nexus.
Technique Energy for water/Water for energy Energy use/Water use

K-medoids clustering Water use
– (Pastor-Jabaloyes et al., 2018)

K-means clustering Water for energy
(Grubert, 2016) –

Hierarchical clustering Energy for water Water use
(Helmbrecht et al., 2017) (Noiva et al., 2016)

DBSCAN Water use
– (Zhang et al., 2016)

HMM Water use
Energy for water (Nguyen et al., 2013a)
(Nguyen, Stewart, & Zhang, 2017) (Nguyen et al., 2013b)

(Nguyen et al., 2014b)
(Nguyen et al., 2015)
Energy use
(Parson et al., 2014)
(Kolter & Jaakkola, 2012)

PCA Energy use
– (Lam et al., 2008)

(Ndiaye & Gabriel, 2011)
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each appliance and an assumption that power consumption of an appliance is piecewise
constant over time.

Several studies (Nguyen et al., 2013a, 2014b, 2015, 2013b) has shown a good
potential for water end use disaggregation and classification of water consumption
events through combining machine learning techniques such as Hidden Markov
Models (HMM), Dynamic Time Warping (DTW) and Artificial Neural Networks. This
approach was limited in its universal usability and compatibility since the data used
for training the algorithms came from a particular water meter data of some specific
geographical location where water consumption habits of users tends to be similar in
nature. In order to address this, another clustering based algorithm, Partition Around
Medoids (PAM) (Reynolds, Richards, de la Iglesia, & Rayward-Smith, 2006) has been used
in disaggregating water end use events in Pastor-Jabaloyes et al., 2018. This involved the
disaggregation process where all the water consumption events are decomposed into
single-use or uncertain type of events which is then used to group single use water
events through PAM with a hypothesis that similar characteristics of single use events
correspond to the same cluster or group of end use.

Principal component analysis (PCA), another useful unsupervised learning based
feature transformation technique that is used to explore variations in inputs or inde-
pendent variables. It is a standard data reduction technique that forms a new set of
orthogonal variables called principal components that are linear composites of the
original variables. This technique helps in representing original data into low-dimen-
sional space by identifying linear combination set of features that accounts for maximal
variance and are simultaneously uncorrelated. PCA can be applied to processes related
to both the electricity sector and the water sector (e.g. Carle, Halpin, & Stow, 2005;
Evans, Guthrie, & Videbeck, 2008; Lam, Wan, Cheung, & Yang, 2008; McManamay et al.,
2017; Ndiaye & Gabriel, 2011; Parinet, Lhote, & Legube, 2004). Specifically, McManamay
et al., 2017 use principal components to calculate a cumulative hydrologic alteration
index (from a seasonal hydrologic alteration index) for 250 nonreference hydrological
gages based on multidimensional measurements. Indices describe different aspects of
the hydrograph, including the magnitude, timing, frequency, duration, and rate of
change in flow. This technique has also been applied extensively to rainfall calculations
(e.g. Basalirwa, 1995; Dyer, 1975; Munoz-Diaz and Rodrigo, 2004; Ogallo, 1989).

3.3. Ensemble learning

Ensemble learning combines various machine-learning models called “base learners” in
order to solve a problem. Usually, in order to get the ensemble learning to work, we
firstly, generate a number of base learners either in sequential or parallel in such a way
that generation of base learners has influence on the generation of the subsequent
learners (Zhou, 2009) and then secondly, we combine the predictions of those base
learners in order to get the prediction output of the ensemble model. The combination
schemes of the base learners can be either voting for classification problem or weighted
averaging for regression problem. Ensemble methods has the advantage of performing
better than individual learning algorithms since it reduces the variance and keep the
balance of bias-variance in control which helps in giving better generalizability on
unseen data. Common methods includes Bootstrap aggregation (Bagging), Boosting,
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random forests among many others (Dietterich, 2000). Table 5 shows some ensemble
learning and hybrid techniques that have been used in the past for predicting energy
resource systems.

3.3.1. Bayesian model averaging
There are considerable limitations to employing a single model in predicting future
energy consumption because of the level of uncertainty associated with model structure
and parameters. Thus, a hybrid model approach is taken in Zhang & Yang, 2015 in which
natural gas consumption is forecast by Ensemble Bayesian model averaging (BMA).
Bayesian model averaging (BMA) allows the uncertainty of the model itself to be
considered in the statistical analysis while it computes the posterior model probability.
This approach reduces the uncertainty inherent in individual models. The BMA method
shows better prediction accuracy than individual models like grey prediction, linear
regression and artificial neural networks, because as it runs it evaluates the performance
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value, Ft = forecast value and n = total number of samples). BMA can assume different
values for parameters (GDP, urban population, energy consumption, industrial structure,
etc.) under different scenarios (Zhang & Yang, 2015).

3.3.2. Random forests
Random forests, a supervised learning technique that is built as an ensemble of decision
tree is seen to be useful for water (Chen, Long, Xiong, & Bai, 2017; Lin et al., 2015;
McManamay, 2014) and energy (Lahouar & Slama, 2017) related application areas. One
great advantage of this technique is that it can be useful in both regression and
classification problems (Liaw et al., 2002). The method is capable of high classification
or regression accuracy, characterization of complex predictor variable interactions,
flexible analytical technique selection, and appropriate missing value handling
(Breiman, 2001).

The study (McManamay, 2014) applied this technique to hydrological networks to
quantify and generalize hydrologic responses to dam regulation, and the authors found
that this method is capable of generalizing the directionality of hydrologic responses to

Table 5. Ensemble learning techniques used in energy-water nexus.
Technique Water Use Energy Generation/Use

Bayesian model averaging – Energy use
(Zhang & Yang, 2015)

Random forests Energy generation
(McManamay, 2014) (Lin et al., 2015)
(Chen et al., 2017) (Lahouar & Slama, 2017)

Energy use
(Ma & Cheng, 2016)

Hybrid models Energy use
(Tang, Wang, Li, Yu, & Zhang, 2015)

(Tiwari & Adamowski, 2014) Energy generation
(Tiwari & Adamowski, 2017) (Liu, Tian, Chen, & Li, 2010)

(Hossain et al., 2012)
(Azimi, Ghayekhloo, & Ghofrani, 2016)
(Hussain & AlAlili, 2017)
(Peng, Zhou, Zhang, & Zheng, 2017)
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dam regulation and providing parameter coefficients to inform future site-specific
modeling efforts. Chen et al., 2017 proposed a model, composed of random forests
regression and wavelet transform, for predicting daily urban water consumption. This
model more accurately predicted water consumption as compare to other individual
models such as random forests regression and feed-forward neural network.

Use of random forest has also been carried out in predicting energy generation and
consumption. Lin et al., 2015 used random forest modeling as a modeling technique in
seasonal analysis and prediction of wind energy. It used AutoRegressive Moving Average
(ARMA) model structure to represent wind speed and direction. The functional form of
the model structure was then determined using random forest. The modeling accuracy
of random forest was compared with Support Vector Regression (SVR) and Artificial
neural network (ANN) and it was found that random forests outperformed both SVR and
ANN. Using random forest to forecast hour-ahead wind power has been studied in
Lahouar & Slama, 2017. This involved selection of important weather factors such as
wind speed and wind direction on the basis of correlation and importance measures.
The study (Ma & Cheng, 2016) used random forest in exploring the influence of 171
features that are related to the energy use intensity (EUI) of residential buildings. The
influential features describing the buildings, households, education, environment, sur-
rounding and transportation were identified based on out-of-bag estimation in random
forest.

3.3.3. Other hybrid models
In Tiwari & Adamowski, 2014, 2017, the authors explored the hybrid approach for
modeling weekly and monthly urban water demand forecasting in cases where data
availability is limited (Donkor, Mazzuchi, Soyer, & Alan Roberson, 2012; Tiwari &
Chatterjee, 2010). This approach comprised of wavelet-bootstrap ANN (WBANN), which
resulted in handles the uncertainty associated with forecast on urban water demand by
mimicry of randomness, thereby reducing the uncertainty in variance (Efron, 1992). A
hybrid model using firefly algorithm (FA) (Yang & He, 2013), a nature-inspired optimiza-
tion tool into least square support vector regression (LSSVR) for predicting hydropower
consumption has been proposed in Tang et al., 2015. The optimization tool was used to
determine the task of determination of parameters in LSSVR. Hong, 2008 discussed
hybrid forecasting technique combining RANN and SVM regression with a chaotic
particle swarm optimization algorithm (RSVRCPSO) for forecasting rainfall forecasting.
Specifically, Jordan Networks (Jordan, 1986), a variant of RANN is employed as a base to
construct the recurrent SVR models. RSVRCPSO holds a particular advantage over the
other analytical tools in terms of its ability to (i) capture electricity load data patterns
easily, (ii) determine suitable parameters (using the swarm optimization algorithm) that
can forecast typhoon rainfall depth data accurately, and (iii) perform structural risk
minimization (rather than relying on minimizing training errors). Advantages of this
hybrid approach are determination of better, accurate and more reliable results impor-
tant not only for analyzing hydropower generation, but also in preparation for sudden
flood events and recovery of economic and human losses. Ren, Suganthan, & Srikanth,
2015 reviewed some wind power and solar irradiance forecasting with ensemble meth-
ods. Short-term forecasting of wind speed and wind power based on wavelet method
and improved time series method (ITSM) is presented in Liu et al., 2010. Advantage of
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this hybrid approach consisted of improved forecasting accuracy without the need to
increase the computational model cost. In Peng et al., 2017, the authors used a hybrid
two-stage decomposition algorithm embedded with complementary ensemble empiri-
cal mode decomposition with adaptive noise (CEEDMAN) (Torres, Colominas,
Schlotthauer, & Flandrin, 2011), variational mode decomposition (VMD)
(Dragomiretskiy & Zosso, 2014), AdaBoost.RT (Solomatine & Shrestha, 2004) and extreme
learning machine (ELM) (Huang, Zhu, & Siew, 2004) for multistep forecasting of wind
speed. The algorithm also showed considerable improvement in accuracy due to its
capability in capturing non-linear characteristics of wind speed time series in compar-
ison to other methods (Peng et al., 2017).

Use of wavelet recurrent backpropagation network (RBPN) to forecast solar irradiance
is presented in Cao & Cao, 2006, 2005 where for one-day ahead forecasting the wavelet
RBPN performed better than the RBPN without any wavelet decomposition. A hybrid
approach to forecast solar power with effective accuracy is presented in Hossain et al.,
2012. It involved the ensemble generation, which comprised of different regression
algorithms such as linear regression, multilayer perceptron, support vector machine
among others (Hossain et al., 2012). Azimi et al., 2016 proposed a hybrid approach to
forecast solar radiation for different time horizons. This approach combined a novel
clustering method, TB K-means with time-series analysis, a novel clustering selection
algorithm and a multilayer perceptron neural network. The performance of this hybrid
approach is then evaluated and compared with different variants of k-means algorithm
using different solar datasets and the results shows that this approach gives better
forecasting results. Hussain & AlAlili, 2017 used a hybrid modeling approach to estimate
solar radiation. This involved the combination of wavelet multiresolution analysis and
artificial neural networks. The wavelet multiresolution analysis is applied in order to
decompose complex input signals into different frequency and time resolutions. These
decomposed signals or time-series were then modeled by four different ANN models
(multilayer perceptron (MLP), adaptive neuro-fuzzy inference system (ANFIS), nonlinear
autoregressive recurrent exogenous neural network (NARX), and generalized regression
neural networks (GRNN)). The modeled time series were then combined to estimate the
original signal. This hybrid approach was shown to outperform traditional standalone
ANNs in terms of coefficient of determination (R2), root mean square error (RMSE), mean
bias error (MBE), mean absolute percentage error (MAPE), and t-statistics.

3.4. Reinforcement learning

Reinforcement learning approach is based on the learning of agents’ behavior by
getting a feedback from the environment. It differs from both supervised learning and
unsupervised learning approach in a considerable manner. In supervised learning, we
have the labeled set of training data and learning is performed based on this limited set
of input and outputs that may not cover the exhaustive set of situations that may be
unseen in future. This set of learning may not be suitable for interactive problems
(Sutton & Barto, 1998) in which reinforcement learning tends to perform better since
it constantly interacts with the environment in getting responses for its actions. Similarly,
Unsupervised learning also limits in finding structural patterns within the examples in a
data while reinforcement learning approach aims at maximizing the reward signals
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concerning interacting of agent with its environment. The environment is typically
formulated as Markov decision process and example of which can be seen in (Nanduri
and Saavedra-Antolínez, 2013) where dynamic competition in wholesale electricity
markets has been simulated by Competitive Markov Decision models (CMDP) in which
stochastic approximation-based reinforcement learning (RL) algorithms have been
employed. The advantage of using CMDP is that it allows capture of the inherent
dynamic and noncooperative nature of electricity market participants under stochastic
demand conditions. Impacts of different forms of joint water and carbon taxes and
extreme climatic events such as drought are investigated on the sampled electricity
network. The different tax scenarios considered are: (1) ramping up, (2) grandfathering,
and (3) uniform adaption. Due to nonconsensus in deciding a better approach amongst
tax scenarios, the model determines the impact of different tax scenarios on complex
wholesale electricity market operations. Because long-term disruption of water supply is
significantly attributed to climate change (DOE, 2007) and water supply plays an
important part in power generation, the impact of water shortage on operational
performance of power generators is shown.

4. Machine learning opportunities for the energy-water nexus

Energy and water is inherently linked with climate change and so it is require to get
useful insights into past and future climate patterns; however, this insight would be
pretty difficult to develop (Burkett et al., 2013). Interactions between water and
energy have considerable variations across different regions due to factors like
climate, population density, and level of economic development among others
(DOE, 2014). It is important for us to model the water-system interactions in a way
that effectively handles uncertainties of both human earth and natural earth systems
(DOE, 2014). Moreover, it would be require to see the impact on water supply as a
result of change in energy demands or the impact on energy supply in changing
water demands.

Therefore, it is required for us to build the machine learning models in order to
predict the water and energy system resources tackling changes in different socio-
economic and biophysical variables and uncertainty in predictions simultaneously. In
the following, we describe possible opportunities in machine learning direction for
solving energy-water nexus problems.

4.1. Mining patterns and relationships in data

Uncovering patterns and relationships between variables of interactions relevant to
energy-water nexus using data mining techniques (Berkhin, 2006; Dunham & Ming,
2003; Han, Pei, & Kamber, 2011) will be significantly important. For example, it would
be better to explore an association or relation between precipitation on water
discharge through hydroelectric power plant and subsequently electricity generation
through data mining techniques. Using spatial (Koperski, Adhikary, & Han, 1996),
temporal (Antunes & Oliveira, 2001) and spatio-temporal data mining methods
(Shekhar et al., 2015) in discovering useful knowledge from existing datasets may
prove to be useful for further research analysis and work. For example, there could be
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a possible clustering of county-level or state-level regions that exhibit similar trends
and characteristics in water-energy resource interactions. Moreover, it can also lead to
outlier detection in a way that a particular region doesn’t confirm to the association
to and major clustering groups.

Spatio-temporal data mining has various broad applications in ecology, environment
management and climatology (Shekhar et al., 2015). Additionally, there is a potential of
employing network-mining techniques (Galloway & Simoff, 2006) which can identify any
networks between large number of data variables within interacting nexus entities like,
for example, energy generation and water distribution. For Energy-water nexus, an
integrated linear optimization models to track resource flow throughout energy and
water systems using harmonization of varying spatio-temporal data scales is presented
in Khan et al., 2018.

4.2. Addressing heterogeneity in data

Data in Energy-water nexus comes from disparate sources and differs in terms of
modality and spatio-temporal resolution. To address this issue, it could be better to
use kernel methods (Filippone, Camastra, Masulli, & Rovetta, 2008; Ralaivola, 2004) as
these methods uses various forms of similarity or kernel functions that incorporates
different forms of spatial, temporal or network dependencies (Galloway & Simoff, 2006).
Moreover, they can be used to build novel predictive, classification and clustering
models that can be used to predict future values of target variables and account for
uncertainty propagation in predictions. These methods have been used to understand
changes in land biomass using satellite imagery (Chandola & Vatsavai, 2010, 2011).

4.3. Predicting energy-water nexus variables

Forecasting a variable ahead in time based using the historical data is an important task in
analyzing the behavior and exploring trends in variables concerned with energy-water
nexus. For instance, forecasting short-, medium-, and long-term trends for water con-
sumption in thermoelectric power generation (Feeley III et al., 2008; Van Vliet et al., 2016)
or energy consumption in wastewater treatment (Clark, 2018; Longo et al., 2016) would be
useful in carrying out water and energy related planning decisions. The study (Yin, Jia, Wu,
Dai, & Tang, 2018) used Artificial Neural Networks (ANN) to forecast water and energy
demand in Wuxi City, China. The forecasting was consistent with the local planning data,
and therefore it was concluded that the model can prove to be useful in providing
strategies for development of water and energy in that region.

4.4. Modeling unobserved variables

In energy-water nexus data, modeling the known or observed variable would be an
easier task to accomplish relatively to unobserved variables or variables having missing
data. To achieve the task of modeling unobserved or latent variable use of latent
variable models (Bishop, 1998) such as factor analysis model or finite mixture model
(McLachlan & McGiffin, 1994) would be useful approaches. These model aims at indir-
ectly inferring properties of latent variable by connecting them to observed variables.
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Applications of latent variable models include longitudinal analysis (Verbeke, 1997) and
spatial statistics (Rue & Held, 2005).

4.5. Integration of models

It would be difficult to use one common model for building relationships between
variables among different resource systems of energy-water nexus that varies greatly
over time and space. There would be cases where a model that is producing good
results at a particular spatial and temporal scale may not be able to produce effective
results when these scales are changed. In such a scenario, it is important to integrate
models that vary spatiotemporally using ensemble learning methods (Dietterich, 2000)
or hybrid approaches (Krasnopolsky & Fox-Rabinovitz, 2006). Ensemble learning meth-
ods like bagging and boosting has the advantage of averaging the bias, reducing the
variance and avoid the problem of overfitting which helps in providing better general-
izability in predictions on unseen data. It could be also better to find ways to integrate
data driven models with process based models in giving better results (Karpatne et al.,
2017; Kinnebrew, Segedy, & Biswas, 2017; Wang, Wu, & Xiao, 2017) as this integration
would help takes advantage of combining data-driven knowledge with knowledge of
scientific principles.

4.6. Deep Learning

Deep Learning is a new evolving field of machine learning and has found its use in many
application domains like computer vision (He, Zhang, Ren, & Sun, 2014; Szegedy et al.,
2015; Zeiler & Fergus, 2014) and natural language processing (Bengio, Ducharme,
Vincent, & Jauvin, 2003; Collobert and Weston, 2008; Pennington, Socher, & Manning,
2014; Rumelhart, Hinton, & Williams, 1986). In terms of performance, deep learning
outperforms the traditional learning algorithms due to its ability to automatically extract
features and producing good prediction results. In the context of energy-water nexus
scope, Nguyen et al., 2017 used high-resolution water energy consumption data to
improve water-end use disaggregation through applying a range of pattern recognition
approaches which includes a Deep Neural Network – stacked autoencoder network
along with Dynamic Time Warping (DTW) algorithm and Hidden Markov Models
(HMM). Much of the work has been done in related climatic science, which comes within
the scope of energy-water-climate nexus due to availability of labeled datasets, compu-
tation advancements (Deng et al., 2009). However, in order to better model energy-
water interactions it is important to understand climate variability as it greatly drives this
interaction because of an inherent uncertainty associated with uneven occurrence of
extreme events which disrupts the water cycle and subsequently disturbing the ecolo-
gical balance of energy-water nexus.

In order to handle large set of extreme climate patterns and events, deep learning
methods have been implemented in Iglesias, Kale, & Liu, 2015; Liu et al., 2016. In
Iglesias et al., 2015 a preliminary examination is carried out using multitask neural
network (MTNN) in order to explore the potential role of deep learning in detecting
extreme climate events. MTNN is used to predict heat waves using time-series data
that includes variables related to solar radiation and atmospheric radiations
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temperature and weather. The research work (Liu et al., 2016) described the use of
deep convolutional neural network (CNN) for tackling the extreme weather events –
tropical cyclones, atmospheric rivers and weather fronts – detection in climate data-
sets. Here, deep CNN that consists of four learnable layers that includes two convolu-
tion layers and two fully connected layers. Each convolution layer is followed by a
Rectified Linear Unit (ReLU) and a max pooling layer. Amongst the two fully con-
nected layers, the first layer is followed by ReLU activation function as characteristic
while the second layer or final fully connected layer has logistic activation function as
nonlinearity. This configuration demonstrates a fair accuracy of 89%–99% in detecting
and classifying extreme events – tropical cyclones, atmospheric rivers and weather
fronts. Recurrent Artificial Neural Networks (RANN/RNN) (Elman, 1990; Jordan, 1986;
Kechriotis, Zervas, & Manolakos, 1994; Tsoi & Back, 1994; Williams & Zipser, 1989). In
RANN, future inputs to the network are derived from past outputs. RANNs are based
on feed-forward artificial neural networks, and include established links between
layers. Their utility in forecasting of long-term potential energy inflows has been
shown for hydropower operations planning by Coulibaly, Anctil, & Bobée, 2000.
Because of the nonstationarity of rainfall trends due to ongoing changes in climate,
dynamic SVMs can be used to gain understanding of these changing patterns (Cao &
Gu, 2002).

5. Conclusions

Maintaining sustainable supplies of water and energy for future generation is the
significant challenge in energy water nexus. Due to increasing competition for limited
water and energy resources, it is important for the decision and policy makers to act in a
prudent manner while formulating policies and decisions on managing these resources.
This paper presented the possible challenges and opportunities for machine-learning
community in tackling energy-water nexus issues.

Although, machine learning based techniques have been employed in modeling indi-
vidual resource water and energy systems, there is high potential in these techniques in
providing future values for water and energy interactions across varying space and time
scale taking account of uncertainty. This would be helpful in gathering key information and
results that will help different stakeholders, resource managers, policy makers, and decision
makers to invest in formulating policies and decisions that provide easy ways to tackle
problems that may arise in the future. It will also be useful for the machine-learning
techniques to provide predictions with better generalizability on unseen data in order to
get more reliable and accurate future water and energy resource projections. The results
should be easily interpretable and communicable to the energy-water nexus researchers.

There is also an urge for relevant stakeholders, science and machine-learning
researchers to work in a cooperative and collaborative manner. It is important for energy
and hydrological researchers to provide key questions relevant to water-energy interac-
tions. Similarly, machine-learning researchers will provide useful analysis and develop
novel methods for providing future projections to key variables in this nexus. Thus, the
synergistic and symbiotic relationship between machine learning world and energy-
water nexus world will prove to be fruitful and beneficial in the long-term goal of
tackling energy water nexus.
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Notes

1. https://www.mathworks.com/discovery/genetic-algorithm.html.
2. http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm.
3. http://scikit-learn.org/stable/modules/tree.html.
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