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ABSTRACT
Analyzing database access logs is a key part of performance
tuning, intrusion detection, benchmark development, and
many other database administration tasks. Unfortunately,
it is common for production databases to deal with millions
or more queries each day, so these logs must be summarized
before they can be used. Designing an appropriate summary
encoding requires trading off between conciseness and infor-
mation content. For example: simple workload sampling
may miss rare, but high impact queries. In this paper, we
present LogR, a lossy log compression scheme suitable for
use in many automated log analytics tools, as well as for hu-
man inspection. We formalize and analyze the space/fidelity
trade-off in the context of a broader family of “pattern” and
“pattern mixture” log encodings to which LogR belongs.
We show through a series of experiments that LogR com-
pressed encodings can be created efficiently, come with prov-
able information-theoretic bounds on their accuracy, and
outperform state-of-art log summarization strategies.
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1. INTRODUCTION
Automated analysis of database access logs is critical for

solving a wide range of problems, from database perfor-
mance tuning [10], to compliance validation [14], and query
recommendation [12]. For example, the Peloton self-tuning
database [39] searches for optimal configurations by repeat-
edly simulating database performance based on statistical
properties of historical queries. Unfortunately, query logs
for production databases can grow to be large — A recent
study of queries at a major US bank for a period of 19
hours found nearly 17 million SQL queries and over 60 mil-
lion stored procedure executions [30] — and computing these
properties from the log itself is slow.
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Tracking only a sample of these queries is not sufficient,
as rare queries can disproportionately affect database per-
formance, for example, if they benefit from an otherwise
unnecessary index. Rather, we need a compressed summary
of the log on which we can compute aggregate statistical
properties. The problems of compression and summariza-
tion have been studied extensively (e.g., [47, 48, 21, 33, 24,
8, 42, 29]). However, these schemes either require the use
of heavyweight inference to desired statistical measures, or
produce unnecessarily large encodings.

In this paper, we adapt ideas from pattern mining and
summarization [35, 16] to propose a middle-ground: LogR,
a summarization scheme that facilitates efficient (both in
terms of storage and time) approximation of workload statis-
tics. By adjusting a tunable parameter in LogR, users can
choose to obtain a high-fidelity, albeit large summary, or
obtain a more compact summary with lower fidelity. Con-
structing the summary that best balances compactness and
fidelity is challenging, as the search space of candidate sum-
maries is combinatorially large [35, 16]. LogR offers a new
approach to summary construction that avoids searching
this space, making inexpensive, accurate computation of ag-
gregate workload statistics possible. As a secondary benefit,
the resulting summaries are also human-interpretable.

LogR does not admit closed-form solutions to classical
fidelity measures like information loss, so we propose an al-
ternative called Reproduction Error. We show through a
combination of analytical and experimental evidence that
Reproduction Error is highly correlated with several classi-
cal measures of encoding fidelity.

LogR-compressed data relies on a codebook of structural
elements like SELECT items, FROM tables, or conjunctive WHERE
clauses [3]. This codebook provides a bi-directional map-
ping from SQL queries to a bit-vector encoding, reducing the
compression problem to one of compactly encoding a collec-
tion of feature-vectors. We further simplify the problem by
observing that a common theme in use cases like automated
performance tuning or query recommendation is the need
for predominantly aggregate workload statistics. As these
are order-independent, we are able to focus exclusively on
compactly representing bags of feature-vectors.

LogR works by identifying groups of co-occurring struc-
tural elements that we call patterns. We define a family of
pattern encodings of access logs, which map patterns to their
frequencies in the log. For pattern encodings, we consider
two idealized measures of fidelity: (1) Ambiguity, which
measures how much room the encoding leaves for interpre-
tation; and (2) Deviation, which measures how reliably the
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encoding approximates the original log. Neither Ambiguity
nor Deviation can be computed efficiently for pattern en-
codings. Hence we propose a measure called Reproduction
Error that is efficiently computable and that closely tracks
both Ambiguity and Deviation.

In general, the size of the encoding is inversely related
with Reproduction Error: The more detailed the encoding,
the more faithfully it represents the original log. Thus, log
compression may be defined as a search over the space of
pattern-based encodings to identify the one that best trades
off between these two properties. Unfortunately, searching
for such an ideal encoding from the space can be compu-
tationally expensive [35, 16]. To overcome this limitation,
we reduce the search space by first clustering entries in the
log and then encoding each cluster separately, an approach
that we call pattern mixture encoding. Finally we identify
a simple approach for encoding individual clusters that we
call naive mixture encodings, and show experimentally that
it produces results competitive with more general techniques
for log compression and summarization.

Concretely, in this paper we make the following contribu-
tions: (1) We define two families of compression for query
logs: pattern and pattern mixture, (2) We define a computa-
tionally efficient measure, Reproduction Error, and demon-
strate that it is a close approximation of Ambiguity and
Deviation (two commonly used measures), (3) We propose a
clustering-based approach to efficiently search for naive mix-
ture encodings, and show how these encodings can be further
optimized, and, (4) We experimentally validate LogR and
show that it produces more precise encodings, faster than
several state-of-the-art pattern encoding algorithms.

Roadmap. The paper is organized as follows: Section 2
formally defines the log compression problem and the sum-
mary representation; Section 3 then defines information loss
of the summaries; Section 4 explains the difficulty in com-
puting classical loss measures and provides a practical alter-
native; Section 5 motivates data partitioning and generalizes
the practical loss measure to partitioned data; Section 6
then introduces the proposed LogR compression scheme;
Section 7 empirically validates the practical loss measure
and evaluates the effectiveness of LogR by comparing it
with two state-of-the-art summarization methods; Section 8
further evaluates LogR under applications of comparison
methods; Section 9 discusses related work. Section 10 con-
cludes the paper and Section 11 discusses future work.

2. PROBLEM DEFINITION
In this section, we introduce and formally define the log

compression problem. We begin by exploring several appli-
cations that need to repeatedly analyze query logs.

Index Selection. Selecting an appropriate set of indexes
requires trading off between update costs, access costs, and
limitations on available storage space. Existing strategies for
selecting a near-optimal set of indexes typically repeatedly
simulate database performance under different combinations
of indexes, which in turn requires repeatedly estimating the
frequency of specific predicates in the workload.

Materialized View Selection. The results of joins or
highly selective selection predicates are good candidates for
materialization when they appear frequently in the work-
load. Like index selection, view selection is a non-convex

optimization problem, typically requiring repeated simula-
tion, which in turn requires repeated frequency estimation
over the workload.

Online Database Monitoring. In production settings, it
is common to monitor databases for atypical usage patterns
that could indicate a serious bug or security threat. When
query logs are monitored, it is often done retrospectively,
some hours after-the-fact [30]. To support real-time moni-
toring it is necessary to quickly compute the frequency of a
particular class of queries in the system’s typical workload.

In each case, the application’s interactions with the log
amount to counting queries that have specific features: se-
lection predicates, joins, or similar.

2.1 Preliminaries and Notation
Let L be a log, or a finite collection of queries q ∈ L. We

write f ∈ q to indicate that q has some feature f , such as
a specific predicate or table in its FROM clause. We assume
(1) that the universe of features in both a log and a query
is enumerable and finite, (2) that the features are selected
to suit specific applications and (3) optionally that a query
is isomorphic to its feature set (motivated in Section 2.3.2).
We outline one approach to extracting features that satisfies
all three assumptions below. We abuse syntax and write q to
denote both the query itself, as well as the set of its features.

Let b denote some set of features f ∈ b. We write these
sets using vector notation: b = (x1, . . . , xn) where n is the
number of distinct features in the entire log and xi indicates
the presence (absence) of ith feature with a 1 (resp., 0).
For any two patterns b, b′, we say that b′ is contained or
appears in b if b′ ⊆ b, or equivalently if ∀i, x′i ≤ xi.

2.2 Coding Queries
For this paper, we specifically adopt the feature extrac-

tion conventions of a query summarization scheme by Aligon
et al. [3]. In this scheme, each feature is one of the follow-
ing three query elements: (1) a table or sub-query in the
FROM clause, (2) a column in the SELECT clause, and (3) a
conjunctive atom of the WHERE clause.

Example 1. Consider the following example query.

SELECT _id , sms_type , _time FROM Messages
WHERE status =? AND transport_type =?

The query has 6 features: 〈 _id, SELECT 〉, 〈 sms_type, SELECT 〉,
〈 _time, SELECT 〉, 〈 Messages, FROM 〉, 〈 status=?, WHERE 〉, and
〈 transport_type=?, WHERE 〉

Although this scheme is simple and limited to conjunctive
queries, it fulfills all three assumptions we make on feature
extraction schemes. The features of a query (and conse-
quently a log) are enumerable and finite, and the feature
set of the query is isomorphic to the original query. Fur-
thermore, even if a query is not itself conjunctive, it may be
rewritable into a conjunctive equivalent.

Although we do not explore more advanced feature encod-
ing schemes in detail here, we direct the interested reader
to work on query summarization [34, 7, 30]. For example, a
scheme by Makiyama et. al. [34] also captures aggregation-
related features like group-by columns, while an approach by
Kul et. al. [30] encodes partial tree-structures in the query.
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SELECT sms type, external ids, time, id
FROM messages

WHERE (sms type=?) ∧ (status=?)

(a) Correlation-ignorant : Features are highlighted independently

SELECT sms type FROM messages WHERE sms type=?

SELECT sms type FROM messages WHERE status=?

(b) Correlation-aware: Pattern groups are highlighted together.

Figure 1: Example Encoding Visualizations

2.3 Log Compression
As a lossy form of compression, LogR only approximates

the information content of a query log. We next develop a
simplified form of LogR that we call pattern-based encod-
ing, and develop a framework for reasoning about the fidelity
of a LogR-compressed log. As a basis for this framework,
we first formulate the information content of a query log to
allow us to adapt classical measures of information content.

2.3.1 Information Content of Logs
We define the information content of the log as a distri-

bution p(Q | L) of queries Q drawn uniformly from the log.

Example 2. Consider the following query log, which con-
sists of four conjunctive queries.

1. SELECT _id FROM Messages WHERE status = ?
2. SELECT _time FROM Messages

WHERE status = ? AND sms_type = ?
3. SELECT _id FROM Messages WHERE status = ?
4. SELECT sms_type , _time FROM Messages

WHERE sms_type = ?

Drawing uniformly from the log, each entry will appear with
probability 1

4
= 0.25. The query q1 (= q3) occurs twice, so

the probability of drawing it is double that of the others (i.e.,
p(q1 | L) = p(q3 | L) = 2

4
= 0.5)

Treating a query as a vector of its component features,
we can define a query q = (x1, . . . , xn) to be an obser-
vation of the multivariate distribution over variables Q =
(X1, . . . , Xn) corresponding to features. The event Xi = 1
occurs if feature i appears in a uniformly drawn query.

Example 3. Continuing, the universe of features for this
query log is (1) 〈 _id, SELECT 〉, (2) 〈 _time, SELECT 〉,
(3) 〈 sms_type, SELECT 〉, (4) 〈 status = ?, WHERE 〉,
(5) 〈 sms_type = ?, WHERE 〉, and (6) 〈 Messages, FROM 〉. Ac-
cordingly, the queries can be encoded as feature vectors, with
fields recording each feature’s presence: q1 = 〈 1, 0, 0, 1, 0, 1 〉,
q2 = 〈 0, 1, 0, 1, 1, 1 〉, q3 = 〈 1, 0, 0, 1, 0, 1 〉, q4 = 〈 0, 1, 1, 0, 1, 1 〉

Patterns. Our target applications require us to count the
number of times features (co-)occur in a query. For example,
materialized view selection requires counting tables used to-
gether in queries. Motivated by this observation, we begin
by defining a broad class of pattern-based encodings that di-
rectly encode co-occurrence probabilities. A pattern is an
arbitrary set of features b = (x1, . . . , xn) that may co-occur
together. Each pattern captures a piece of information from
the distribution p(Q | L). In particular, we are interested in
the probability of uniformly drawing a query q from the log
that contains the pattern b (i.e., q ⊇ b):

p(Q ⊇ b | L) =
∑

q∈L∧q⊇b p(q | L)

When it is clear from context, we abuse notation and write
p(·) instead of p(· | L). Recall that p(Q) can be represented
as a joint distribution of variables (X1, . . . , Xn) and proba-
bility p(Q ⊇ b) is equivalent to p(X1 ≥ x1, . . . , Xn ≥ xn).

Pattern-Based Encodings. Denote by Emax : {0, 1}n →
[0, 1], the mapping from each pattern (b) to its frequency in
the log: Emax =

{ (
b→ p(b)

) ∣∣ b ∈ {0, 1}n
}

A pattern-based encoding E is any such partial mapping
E ⊆ Emax. We denote the frequency of pattern b in encod-
ing E by E [b] (= p(Q ⊇ b)). When it is clear from context,
we abuse syntax and also use E to denote the set of pat-
terns it maps (i.e., domain(E)). Hence, |E| is the number
of mapped patterns, which we call the encoding’s Verbosity.
A pattern-based encoder is any algorithm encode(L, ε) 7→ E
whose input is a log L and whose output is a set of patterns
E , with Verbosity thresholded at some integer ε. Many pat-
tern mining algorithms [35, 16] can be used for this purpose.

2.3.2 Communicating Information Content
A side-benefit of pattern-based encodings is that, under

the assumption of isomorphism in Section 2.1, patterns can
be translated to their query representations and used for
human inspection of the log. Figure 1 shows two exam-
ples. The approach illustrated in Figure 1a uses shading to
show each feature’s frequency in the log, and communicates
frequently occurring predicates or columns. This approach
might, for example, help a human to manually select in-
dexes. A second approach illustrated in Figure 1b conveys
correlations, showing the frequency of entire patterns. The
accompanying technical report [45] explores visualizations
of pattern-based summaries in greater depth.

3. INFORMATION LOSS
Our goal is to encode the distribution p(Q) as a set of

patterns: obtaining a less verbose encoding (i.e., with fewer
patterns), while also ensuring that the encoding captures
p(Q) with minimal information loss. In this section, we
define information loss for pattern-based encodings.

3.1 Lossless Summaries
To establish a baseline for measuring information loss, we

begin with the extreme cases. At one extreme, an empty
encoding (|E| = 0) conveys no information. At the other ex-
treme, we have the encoding Emax which is the full mapping
from all patterns. Having this encoding is a sufficient con-
dition to exactly reconstruct the original distribution p(Q).

Proposition 1. For any query q = (x1, . . . , xn) ∈ 0, 1n,
the probability of drawing exactly q at random from the log
(i.e., p(X1 = x1, . . . , Xn = xn)) is computable, given Emax.

3.2 Lossy Summaries
Although Emax is lossless, its Verbosity is exponential in

the number of features (n). Hence, we will focus on lossy en-
codings that can be less verbose. A lossy encoding E ⊂ Emax
may not precisely identify the distribution p(Q), but can still
be used to approximate it. We characterize the information
content of a lossy encoding E by defining a space (denoted
by ΩE) of distributions ρ ∈ ΩE allowed by an encoding E .
This space is defined by constraints as follows: First, we
have the general properties of probability distributions:

∀q ∈ {0, 1}n : ρ(q) ≥ 0
∑

q ρ(q) = 1
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Each pattern b in the encoding E constrains relevant prob-
abilities in distribution ρ to sum to the target frequency:

∀b ∈ domain(E) : E [b] =
∑

q⊇b
ρ(q)

Note that the dual constraints 1 − E [b] =
∑

q 6⊇b ρ(q) are

redundant under constraint
∑

q ρ(q) = 1.
The resulting space ΩE is the set of all query logs, or

equivalently the set of all possible distributions of queries,
that obey these constraints. From the outside observer’s
perspective, the distribution ρ ∈ ΩE that the encoding con-
veys is ambiguous: We model this ambiguity using a random
variable PE with support ΩE . The true distribution p(Q)
derived from the query log must appear in ΩE , denoted as
p(Q) ≡ ρ∗ ∈ ΩE (i.e., p(PE = ρ∗) > 0). Of the remaining
distributions ρ admitted by ΩE , it is possible that some are
more likely than others. For example, a query containing
a column (e.g., status) is only valid if it also references a
table that contains the column (e.g., Messages). This prior
knowledge may be modeled as a prior on the distribution
of PE or equivalently by an additional constraint. However,
for the purposes of this paper, we take the uninformed prior
by assuming that PE is uniformly distributed over ΩE :

p(PE = ρ) =

{
1
|ΩE |

if ρ ∈ ΩE

0 otherwise

Naive Encodings. One specific family of lossy encodings
that treat each feature as being independent (e.g., as in Fig-
ure 1a) is of particular interest to us. We call this family
naive encodings, and return to it throughout the rest of the
paper. A naive encoding Ë is composed of all patterns that
have exactly one feature with non-zero frequency.

domain(Ë) = { (0, . . . , 0, xi, 0, . . . , 0) | i ∈ [1, n], xi = 1 }

3.3 Idealized Information Loss Measures
Based on the space of distributions constrained by the en-

coding, the information loss of an encoding can be consid-
ered from two related, but subtly distinct perspectives: (1)
Ambiguity measures how much room the encoding leaves for
interpretation and (2) Deviation measures how reliably the
encoding approximates the target distribution p(Q).

Ambiguity. We define the Ambiguity I(E) of an encoding
as the entropy of the random variable PE . The higher the
entropy, the less precisely E identifies a specific distribution.

I(E) =
∑
ρ

p(PE = ρ) log (p(PE = ρ))

Deviation. The deviation from any permitted distribu-
tion ρ to the true distribution ρ∗ can be measured by the
Kullback-Leibler (K-L) divergence DKL(ρ∗||ρ). We define
the Deviation d(E) of a encoding as the expectation of the
K-L divergence over all permitted ρ ∈ ΩE :

d(E) = EPE [DKL(ρ∗||PE)] =
∑
ρ∈ΩE

p(PE = ρ) · DKL(ρ∗||ρ)

Limitations. There are two limitations to these idealized
measures in practice. First, K-L divergence is not defined
on any permitted distribution ρ where the true distribution
ρ∗ is not absolutely continuous (denoted ρ∗ � ρ). Second,
neither Deviation nor Ambiguity has a closed-form formula.

4. PRACTICAL LOSS MEASURE
Computing either Ambiguity or Deviation requires enu-

merating the entire space of permitted distributions. One
approach to approximating either measure is repeatedly sam-
pling from, rather than enumerating the space. However,
accurate approximations require a large number of samples,
rendering this approach similarly inefficient. In this sec-
tion, we propose a faster approach to assessing the fidelity
of a pattern encoding. Specifically, we select a single repre-
sentative distribution ρE from the space ΩE , and use ρE to
approximate both Ambiguity and Deviation.

4.1 Reproduction Error
Maximum Entropy Distribution. The representative
distribution is chosen by applying the maximum entropy
principle [23] commonly used in pattern-based summariza-
tion [35, 16]. That is, we select the distribution ρE with
maximum entropy:

ρE = arg max
ρ∈ΩE

H(ρ) where H(ρ) =
∑

q∈{0,1}n
−ρ(q) log ρ(q)

The maximum entropy distribution best represents the cur-
rent state of knowledge. That is, a distribution with lower
entropy assumes additional constraints derived from pat-
terns that we do not know, while one with higher entropy
violates the constraints from patterns we do know.

Maximizing an objective function belonging to the expo-
nential family (entropy in our case) under a mixture of lin-
ear equalities/inequality constraints is a convex optimization
problem [9] which guarantees a unique solution and can be
efficiently solved using the cvx toolkit [18, 38], and/or by it-
erative scaling [35, 16]. For naive encodings specifically, we
can assume independence between each feature Xi. Under
this assumption, ρE has a closed-form representation:

ρE(q) =
∏
i

p(Xi = xi) where q = (x1, . . . , xn)

We define Reproduction Error e(E) as the entropy difference
between the representative and true distributions:

e(E) = H(ρE)−H(ρ∗) where ρE = arg min
ρ∈ΩE

−H(ρ)

4.2 Practical vs Idealized Information Loss
In this section we prove that Reproduction Error closely

parallels Ambiguity. We define a partial order lattice over
encodings and show that for any pair of encodings on which
the partial order is defined, a like relationship is implied for
both Reproduction Error and Ambiguity. We supplement
the proofs given in this section with an empirical analysis
relating Reproduction Error to Deviation in Section 7.1.

Containment. We define a partial order over encodings
≤Ω based on containment of their induced spaces ΩE :

E1 ≤Ω E2 ≡ ΩE1 ⊆ ΩE2

That is, one encoding (i.e., E1) precedes another (i.e., E2)
when all distributions admitted by the former encoding are
also admitted by the latter.

Containment Captures Reproduction Error. We first
prove that the total order given by Reproduction Error is a
superset of the partial order ≤Ω.
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Lemma 1. For any pair of encodings E1, E2 that induce
spaces ΩE1 ,ΩE2 and maximum entropy distributions ρE1 , ρE2
it holds that E1 ≤Ω E2 → e(E1) ≤ e(E2).

Proof. First we have ΩE2 ⊇ ΩE1 → ρE1 ∈ ΩE2 . Since ρE2
has the maximum entropy among all distributions ρ ∈ ΩE2 ,
we have H(ρE1) ≤ H(ρE2) ≡ e(E1) ≤ e(E2).

Containment Captures Ambiguity. Next, we show
that the partial order based on containment implies a like
relationship between Ambiguities of pairs of encodings.

Lemma 2. Given encodings E1, E2 with uninformed prior
on PE1 ,PE2 , it holds that E1 ≤Ω E2 → I(E1) ≤ I(E2).

Proof. Given an uninformed prior: I(E) = log |ΩE |, we
have E1 ≤Ω E2 → |ΩE1 | ≤ |ΩE2 | → I(E1) ≤ I(E2)

5. PATTERN MIXTURE ENCODINGS
Thus far we have defined the problem of log compres-

sion, treating the query log as a multivariate distribution
p(Q) where patterns capture positive frequencies of feature
(co-)occurrence. However in cases like logs of mixed work-
loads, there are also many cases of anti-correlation between
features. For example, consider a log that includes queries
drawn from a mixture of two workloads with disjoint feature
sets. Pattern-based summaries can not convey such anti-
correlations easily. As a result, patterns including features
from both workloads never actually co-occur in the log, but
a pattern-based summary of the log will suggest otherwise.
Such false positives are especially problematic for use-cases
of LogR involving outlier detection (e.g., [32]). Even in
other settings, capturing correlations reduces data dimen-
sionality and improves both runtime and effectiveness of
state-of-the-art pattern mining algorithms (See Section 8.1).

In this section, we propose a generalization of pattern en-
codings where the log is modeled not as a single probability
distribution, but rather as a mixture of several simpler dis-
tributions. The resulting encoding is likewise a mixture:
Patterns for each component of the mixture are stored inde-
pendently. Hence, we refer to it as a pattern mixture encod-
ing, and it forms the basis of LogR compression. We first
focus on a simplified form of this problem, where we only mix
naive encodings (we explore more general mixtures in Sec-
tion 6.4). We refer to the resulting scheme as naive mixture
encodings, and give examples of the encoding in Section 5.1.
Then we generalize Reproduction Error and Verbosity to
pattern mixture encodings in Section 5.2. Finally, with gen-
eralized encoding evaluation measures, we evaluate several
clustering methods for creating naive mixture encodings.

5.1 Example: Naive Mixture Encodings
Consider a toy query log with only 3 conjunctive queries.

1. SELECT id FROM Messages WHERE status = ?

2. SELECT id FROM Messages

3. SELECT sms_type FROM Messages

The codebook of this log includes 4 features: 〈 id, SELECT 〉,
〈 sms_type, SELECT 〉, 〈 Messages, FROM 〉, 〈 status = ?, WHERE 〉.
Re-encoding the three queries as vectors, we get:

1. 〈 1, 0, 1, 1 〉 2. 〈 1, 0, 1, 0 〉 3. 〈 0, 1, 1, 0 〉

A naive encoding of this log can be expressed as:〈
2

3
,

1

3
, 1,

1

3

〉

This encoding captures that all queries in the log pertain
to the Messages table, but obscures the relationship between
the remaining features. For example, this encoding obscures
the anti-correlation between id and sms_type. Similarly, the
encoding hides the correlation between status = ? and id.
Such relationships are critical for evaluating the effectiveness
of views or indexes.

Example 4. The maximum entropy distribution for any
naive encoding assumes that features are independent. As-
suming independence, the probability of query 1 uniformly
drawn from the log is estimated as:

p(id) · p(¬sms type) · p(Messages) · p(status=?) =
4

27
≈ 0.148

This is a significant difference from the true probability of
this query (i.e., 1

3
). Conversely queries not in the log, such

as the following, have non-zero probability in the encoding.

SELECT sms_type FROM Messages WHERE status = ?

p(¬id) · p(sms type) · p(Messages) · p(status=?) =
1

27
≈ 0.037

To achieve a more faithful representation of the original
log, we could partition it into two components, with the
corresponding encoding parameters:

Partition 1 (L1) Partition 2 (L2)

(1, 0, 1, 1) (1, 0, 1, 0) (0, 1, 1, 0)
↓ ↓ ↓〈

1, 0, 1, 1
2

〉
〈 0, 1, 1, 0 〉

Although there are now two encodings, the encodings are
not ambiguous. The feature status = ? appears in exactly
half of the log entries, and is indeed independent of the
other features. All other attributes in each encoding appear
in all queries in their respective partitions. Furthermore, the
maximum entropy distribution induced by each encoding is
exactly the distribution of queries in the partitioned log.
Hence, the Reproduction Error is zero for both encodings.

5.2 Generalized Encoding Fidelity
We next generalize our definitions of Reproduction Error

and Verbosity from pattern-based to pattern mixture en-
codings. Suppose query log L has been partitioned into K
clusters with Li, Ei, ρEi and ρ∗i (where i ∈ [1,K]) represent-
ing the log of queries, encoding, maximum entropy distribu-
tion, and true distribution (respectively) for the ith cluster.
First, observe that the distribution for the whole log (i.e.,
ρ∗) is the sum of distributions for each partition (i.e., ρ∗i )

weighted by the proportion (i.e., |Li|
|L| ) of queries:

ρ∗(q) =
∑

i=1,...,K

wi · ρ∗i (q) where wi =
|Li|
|L|

Generalized Reproduction Error. Similarly, the max-
imum entropy distribution ρE for the whole log is:

ρE(q) =
∑

i=1,...,K

wi · ρEi(q)

We define the Generalized Reproduction Error of a pattern
mixture encoding similarly, as the weighted sum of Repro-
duction Error for each partition:

e(E) = H(ρE)−H(ρ∗) =
∑
i

wi(H(ρEi )−H(ρ∗i ) ) =
∑
i

wie(Ei)

When it is clear from context, we refer to Generalized Re-
production Error as Error in the rest of this paper. As in
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the base case, a pattern mixture encoding with low Error
indicates a high-fidelity representation of the original log. A
process can infer the frequency of any query p(Q = q | L)
drawn from the original distribution, simply by inferring its
frequency in each cluster i (i.e., p(Q = q | Li)) and taking
a weighted average over all inferences.

Generalized Verbosity. We generalize verbosity to pat-
tern mixture encodings as the Total Verbosity (

∑
i |Si|), or

the total size of the encoded representation.

6. PATTERN MIXTURE COMPRESSION
We are now ready to describe the LogR compression

scheme. Broadly, LogR attempts to identify a pattern mix-
ture encoding that optimizes for some target trade-off be-
tween Total Verbosity and Error. A naive — though im-
practical — approach to finding such an encoding would be
to search the entire space of possible pattern mixture en-
codings. Instead, LogR approximates the same outcome by
first identifying the naive mixture encoding that is closest
to optimal for the desired trade-off. As we show experimen-
tally, this naive mixture encoding is competitive with more
complicated, slower techniques for summarizing query logs.
We also explore a hypothetical second stage, where LogR
refines the naive mixture encoding to further reduce Error.
The outcome of this hypothetical stage has a slightly lower
Error and Verbosity, but does not admit efficient computa-
tion of database statistics.

6.1 Constructing Naive Mixture Encodings
LogR searches for a naive mixture encoding that best

optimizes for a requested tradeoff between Total Verbosity
and Error. As a way to make this search efficient, we observe
that a log (or log partition) uniquely determines its naive (or
naive mixture) encoding. Thus the problem of searching for
a naive mixture encoding reduces to searching for the corre-
sponding log partitioning. We further observe that the Error
of a naive mixture encoding is proportional to the diversity
of the queries in the log being encoded: The more uniform
the log (or partition), the lower the Error. Hence, the par-
titioning problem further reduces to clustering queries in
the log by feature overlap. To identify a suitable clustering
scheme, we next evaluate four commonly used clustering
schemes with respect to their ability to create naive mixture
encodings with low Error and Verbosity: (1) KMeans [22]
with Euclidean distance (i.e., l2-norm) and Spectral Cluster-
ing [26] with (2) Manhattan (i.e., l1-norm), (3) Minkowski
(i.e., lp-norm) with p = 4, and (4) Hamming distances1.

Experiment Setup. Spectral and KMeans clustering al-
gorithms are implemented by sklearn [40] in Python. We
gradually increase K (i.e., the number of clusters) for each
clustering scheme to mimic the process of continuously sub-
clustering the log, tolerating higher Total Verbosity for lower
Error. To reduce randomness in clustering, we run each
of them 10 times for each K and averaging the Error of
the resulting encodings. We used two datasets: “US Bank”
and “PocketData”. We describe both datsets and the data
preparation process in detail in Section 7. All results for our
clustering experiments are shown in Figure 2.

1We also evaluated Spectral Clustering with Euclidean,
Chebyshev and Canberra distances; These did not perform
better and we omit them in the interest of conciseness.

6.1.1 Clustering
We next show that clustering is an effective way to con-

sistently reduce Error, although no one clustering scheme is
ideal for all three of Error, Verbosity, and runtime.

More clusters reduces Error. Figure 2a compares the
relationship between the number of clusters (x-axis) and Er-
ror (y-axis), showing the varying rates of convergence to zero
Error for each clustering scheme. We observe that adding
more clusters does consistently reduce Error for both data
sets, regardless of clustering algorithm or distance measure.
We note that the US Bank dataset is significantly more di-
verse than the PocketData dataset, with respect to the to-
tal number of features (See Table 1) and that more than 30
clusters may be required for reaching near-zero Error. In
general, Hamming distance converges faster than other dis-
tance measures on PocketData. Minkowski distance shows
faster convergence rate than Hamming within 14 clusters on
the US bank dataset.

Adding more clusters increases Verbosity. Figure 2b
compares the relationship between the number of clusters
(x-axis) and Verbosity (y-axis). We observe that Verbosity
increases with the number of clusters. This is because when
a partition is split, each feature common to both partitions
increases the Verbosity by one.

Hierarchical Clustering. The clustering schemes pro-
duce non-monotonic cluster assignments. That is, Error
can occasionally grow as clusters are added (Figure 2a).
An alternative is to use hierarchical clustering [22], which
forces monotonic assignments and offers more dynamic con-
trol over the Error/Verbosity tradeoff.

Run Time Comparison. The total runtime (y-axis) in
Figure 2c includes both distance matrix computation time
(if any) and clustering time. Note the log-scale: K-Means is
orders of magnitude faster than the others.

Take-Aways. For time-sensitive applications, KMeans al-
gorithm is preferred to Spectral Clustering. With respect
to distance measures, minkowski (i.e., lp-norm) with p = 4
provides the best tradeoff between Error and runtime.

Visualizing Naive Mixture Encoding. As with normal
pattern summaries, naive mixture summaries are also inter-
pretable. For example a visualization like that of Figure 1a
can be repeated, once for each cluster. For more details, see
our accompanying technical report [45].

6.2 Approximating Log Statistics
Recall that our primary goal is estimating statistical prop-

erties. In particular, we are interested in counting the oc-
currences Γb(L) (i.e., p(Q ⊇ b) · |L|) of some pattern b in

the log. Recall that a naive encoding Ë includes only single-
feature patterns (i.e., patterns exactly encoding p(Xi ≥ xi))
and that the closed-form representation for the maximum
entropy distribution ρË arises by independence between fea-
tures (i.e., ρË(Q = q) =

∏
i p(Xi = xi)). Similarly, we use

the independence assumption to estimate:

est[Γb(L) | Ë ] = ρË(Q ⊇ b) · |L| =
∏
i

p(Xi ≥ xi) · |L|

This process trivially generalizes to naive pattern mixture
encodings by mixing distributions. Specifically, given a set
of partitions L1 ∪ . . . ∪ LK = L, the estimated counts for
Γb(L) under each individual partition Li can be computed
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Figure 2: Clustering Schemes Comparison

based on the partition’s naive encoding Ëi, and we then sum
up the estimated counts in each partition:

est[ Γb(Li) | Ë1, . . . , ËK ] =
∑

i∈[1,K]

est[ Γb(Li) | Ëi ]

6.3 Pattern Synthesis & Frequency Estimate
In this section, we empirically verify the effectiveness of

naive mixture encodings in approximating log statistics from
two related perspectives. The first perspective focuses on
synthesis error. It measures whether patterns synthesized
by the naive mixture encoding actually appear in the log.
From the second perspective, we further investigate the fre-
quency deviation of patterns contained in the log. This eval-
uates whether a naive mixture encoding computes the cor-
rect frequency for patterns of interest to client applications.
Experimental results are shown in Figure 3. Both synthe-
sis error and frequency deviation consistently decrease given
more clusters. Furthermore, as we vary the number of clus-
ters, both measures correlate with Reproduction Error.
Synthesis Error is measured by 1 − m

n
where m out of

n randomly synthesized patterns actually appear in the log.
Intuitively, when synthesis error grows, it is more likely that
a pattern from the synthesized log will not appear in the
original log (i.e., smaller values are better). Figure 3a shows
synthesis error (y-axis) versus Reproduction Error (x-axis).
The figure is generated by synthesizing n = 10000 patterns
from each cluster of the log. Note that different values of

n give similar observations. The overall synthesis error is
measured by the average of synthesis errors for all clusters,
weighted by the proportion of queries in each cluster.

Frequency Deviation is measured for a pattern by |est−t|
t

where t stands for true frequency of a pattern and est is
the one estimated by the naive mixture encoding. Since
frequency deviation is smaller when evaluated on a pattern
contained in the other, as an alternative, we treat each dis-
tinct query in the log as a pattern and the frequency devia-
tion on it will be the worst case for all patterns that it con-
tains. Intuitively, this value captures the percentage error
of frequency estimates (i.e., smaller values are better). For
each cluster, we sum frequency deviations on all of its dis-
tinct queries and the final frequency deviation for the whole
log is an weighted average (same as synthesis error) over
all clusters. Figure 3b shows frequency deviation (y-axis)
versus Reproduction Error (x-axis).

6.4 Naive Encoding Refinement
Naive mixture encodings can already achieve close to near-

zero Error (Figure 2a), have low Total Verbosity, and admit
efficiently computable log statistics Γb(L). Doing so makes
estimating statistics more computationally expensive. How-
ever, as a thought experiment we consider a hypothetical
second pass to enrich naive mixture encodings with non-
naive patterns. We start by considering the simpler problem
of identifying the individual non-naive pattern that maxi-
mally reduces the Reproduction Error of a naive encoding.
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Figure 3: Effectiveness of Naive Mixture Encoding

Feature-Correlation Refinement. Recall that under
naive encodings, we have a closed-form estimation ρË(Q ⊇
b) of pattern frequencies p(Q ⊇ b). We thus define the
feature-correlation of pattern b as the log-difference from
its actual frequency to the estimate.

fc(b, Ë) = | log (p(Q ⊇ b))− log (ρË(Q ⊇ b)) |

Intuitively, patterns with higher feature correlations carry
more information content of the log that its naive encoding
ignores, making them ideal candidates for addition to the
naive encoding. For two patterns with the same feature-
correlation, the one that occurs more frequently [19] will
have greater impact on Reproduction Error. As a result, we
compute an overall score for ranking individual patterns:

corr rank(b) = p(Q ⊇ b) · fc(b, Ë)

We show in Section 7.1 that corr rank closely correlates
with Reproduction Error. That is, a higher corr rank value
indicates that a pattern produces a greater reduction in Re-
production Error if introduced into the naive encoding.

Pattern Diversification. In general, we would like to
identify a set of patterns. The greedy approach that adds
patterns one by one based on their ranking scores corr rank
is unreliable, as modifying the naive encoding invalidates
the closed-form estimation ρË(Q ⊇ b) that score corr rank
relies on. In other words, we can not sum up corr rank
scores of patterns in a set to rank its overall contribution
to Reproduction Error reduction, as information content
carried by patterns may overlap. To counter such overlap,
or equivalently to diversify patterns, a search through the
space of pattern-sets is needed. This type of diversification
is commonly used in pattern mining applications, but can
quickly become expensive. As we show experimentally in
Section 7.2, the benefit of diversification is minimal.

7. EXPERIMENTS
In this section, we design experiments to empirically (1)

validate that Reproduction Error correlates with Deviation
and (2) evaluate the effectiveness of LogR compression.

We use two specific datasets in the experiment: (1) SQL
query logs of the Google+ Android app extracted from the
PocketData public dataset [27] and (2) SQL query logs that
capture all query activity on the majority of databases at a
major US bank over a period of approximately 19 hours. A
summary of these two datasets is given in Table 1.

The PocketData-Google+ query log. The dataset con-
sists of SQL logs that capture all database activities of 11
Android phones. We selected the Google+ application for
our study since it is one of the few applications where all
users created a workload. This dataset is a stable workload
of exclusively machine-generated queries.

Table 1: Summary of Data sets

Statistics PocketData US bank

# Queries 629582 1244243

# Distinct queries 605 188184

# Distinct queries (w/o const) 605 1712

# Distinct conjunctive queries 135 1494

# Distinct re-writable queries 605 1712

Max query multiplicity 48651 208742

# Distinct features 863 144708

# Distinct features (w/o const) 863 5290

Average features per query 14.78 16.56

The US bank query log. This log is an anonymized
record of queries processed by multiple relational database
servers at a major US bank [30] over a period of 19 hours.
Of the nearly 73 million database operations captured, 58
million are not directly queries, but rather invocations of
stored procedures. A further 13 million used non-standard
SQL features not supported by our SQL parser. Of the
remaining of the 2.3 million parsed SQL queries, we base
our analysis on the 1.25 million conjunctive SELECT queries.
This dataset can be characterized as a diverse workload of
both machine- and human-generated queries.

Common Experiment Settings. Experiments were
performed on a 2.8 GHz Intel Core i7 CPU with 16 GB 1600
MHz DDR3 memory and a SSD running macOS Sierra.

Constant Removal. A number of queries in the US bank
query log differ only in hard-coded constant values. Table 1
shows the total number of queries, as well as the number
of distinct queries if we ignore constants. By comparison,
queries in PocketData all use JDBC parameters. For these
experiments, we ignore constant values in queries.

Query Regularization. We apply query rewrite rules
(same as [31]) to regularize queries into equivalent conjunc-
tive forms, where possible. Table 1 shows that 135

605
and 1494

1712
of distinct queries are in conjunctive form for PocketData
and US bank respectively. After regularization, all queries
in both data sets can be either simplified into conjunctive
queries or re-written into a UNION of conjunctive queries com-
patible with feature scheme of Aligon et al. [3].

Convex Optimization Solving. All convex optimization
problems for measuring Reproduction Error and Deviation
are solved by the successive approximation heuristic imple-
mented by the CVX toolbox [18] with the Sedumi solver.

7.1 Validating Reproduction Error
In this section, we validate that Reproduction Error is a

practical alternative to Deviation. In addition, we also offer
measurements on its correlation with Deviation and score
corr rank in Section 6.4. As it is impractical to enumerate
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Figure 4: Validating Reproduction Error

all possible encodings, we choose a subset of encodings for
both datasets. Specifically, we first select all features with
frequencies in the range [0.01, 0.99] and use these features
to construct patterns. We then enumerate combinations of
K (up to 3) patterns as our chosen encodings.

Containment Captures Deviation. Here we empiri-
cally verify that containment (Section 4.2) captures Devi-
ation (i.e., E1 ≤Ω E2 → d(E1) ≤ d(E2)) to complete the
chain of reasoning that Reproduction Error captures Devi-
ation. Figures 4a and 4b show all pairs of encodings where
E2 ⊃ E1. The y-axis shows the difference in Deviation val-
ues (i.e., d(E2)− d(E1)). Deviation d(E) is approximated by
drawing 1 million samples from the space ΩE induced by
the encoding E . For clarity, we bin pairs of encodings by the
degree of overlap between them, measured by the Deviation
of the set-difference d(E2 \ E1); Higher d(E2 \ E1) implies less
overlap. Y-axis values are grouped into bins and visualized
by boxplot where the boxes represent ranges within standard
deviation and crosses are outliers. Intuitively, points above
zero on the y-axis (i.e., d(E2) − d(E1) > 0) are pairs of en-
codings where the Deviation order agrees with containment
order. This is the case for virtually all encoding pairs.

Additive Separability of Deviation. We also observe
from Figures 4a and 4b that agreement between Deviation
and containment order is correlated with overlap: More sim-
ilar encodings are more likely to have agreement. Combined
with Proposition 1, this shows first that for similar encod-
ings, Reproduction Error is likely to be a reliable indicator
of Deviation. This also suggests that Deviation is additively
separable: The information loss (i.e., d(E2)− d(E1)) caused
by excluding the encoding E2 \ E1 from E2 correlates with
the quality (i.e., d(E2 \ E1)) of the encoding E2 \ E1 itself:
E2 ⊃ E1 → d(E2)−d(E1) < 0 and d(E2 \E1) ∝ d(E2)−d(E1)

Error correlates with Deviation. As a supplement,
Figures 4c and 4d empirically confirm that that Reproduc-
tion Error (x-axis) indeed closely correlates with Deviation
(y-axis). Mirroring our findings above, correlation between
them is tighter at lower Reproduction Error.

Error and Feature-Correlation. Figure 4e and 4f show
the relationship between Reproduction Error (y-axis) and
score corr rank (x-axis), as discussed in Section 6.4. Val-
ues of y-axis are Reproduction Error of the naive encodings
extended by a non-naive pattern b containing multiple fea-
tures (up to 3 for illustrative purposes). One can observe
that Reproduction Error of extended naive encodings almost
linearly correlates with corr rank(b). In addition, one can
also observe that corr rank becomes higher when the pat-
tern b encodes more correlated features.

7.2 Feature-Correlation Refinement
In this section, we design experiments serving two pur-

poses: (1) Evaluating the potential reduction of Error from
refining naive mixture encodings through state-of-the-art
pattern-based summarizers, and (2) Evaluating whether we
can replace naive mixture encodings by the encodings cre-
ated from summarizers that we have plugged-in.

Experiment Setup. To serve both purposes, we con-
struct pattern mixture encodings under three configurations:
(1) Naive mixture encodings; (2) Pattern-based encodings
and (3) Naive mixture encodings refined into pattern-based
encodings. Naive mixture encodings are constructed by K-
Means clustering. Pattern-based encodings are generated by
two state-of-the-art pattern-based summarizers: (1) Laser-
light [16] that summarizes multi-dimensional data in order
to predict an augmented binary variable and (2) MTV [35]
that aims at mining maximally informative patterns that
summarize binary multi-dimensional data.

The experimental results are shown in Figure 5 that con-
tains 3 sub-figures sharing the same x-axis, i.e., the number
of clusters. Figure 5a compares the Error (y-axis) between
naive mixture encodings and pattern mixture encodings that
consist of patterns mined from MTV or Laserlight. Fig-
ure 5b evaluates the change in Error (y-axis) through refin-
ing naive mixture encodings by adding patterns from MTV
or Laserlight. Figure 5c compares the runtime (y-axis) be-
tween constructing naive mixture encodings and applying
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MTV or Laserlight. We only show the results for US bank
query log as results for PocketData give similar observations.

7.2.1 Pattern-based vs Naive Mixture Encodings
Figure 5a and 5c suggest that naive mixture encodings

outperform pattern-based encodings in two ways.

Reproduction Error. We observe from Figure 5a that the
Reproduction Error of naive mixture encodings are orders
of magnitude lower than pattern-based encodings generated
by Laserlight or MTV alone.

Computation Efficiency. From Figure 5c we observe
that the runtime of constructing naive mixture encodings is
significantly lower than that of Laserlight and MTV.

The one way where pattern-based encodings outperform
naive mixture encodings is in Total Verbosity. Laserlight
and MTV produce encodings with significantly fewer pat-
terns, as the naive mixture encoding requires at least one
pattern for each feature (e.g., 5290 patterns in the US bank
query log). Conversely, mining this number of patterns is
computationally infeasible (Figure 5c).
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(a) Naive Mixture v. LaserLight/MTV alone. Note
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Figure 5: Feature-correlation refinement (US bank)

7.2.2 Refining Naive Mixture Encodings
The experiment result is shown in Figure 5b. Note that we

offset y-axis to show the change in Error. We observe from
the figure that reduction of Error contributed by plugging-in
pattern-based summarizers is small for both algorithms.

Dimensionality Restriction. For Laserlight, the obser-
vation is partially due to the fact that we only keep top 100
features (in terms of variability) of the data as its input,

since Laserlight is implemented in PostgresSQL 9.1 which
has a threshold of 100 arguments (one argument for each
feature) that can be passed to a function.

Pattern Restriction. For MTV, this is due to a runtime
error that limits us to 15 or less patterns. We refer the
reader to Section 4.5 in [35] that explains the difficulty in
inferring the maximum entropy distribution constrained by
a large number of non-naive patterns.

8. ALTERNATIVE APPLICATIONS
To fairly evaluate Laserlight and MTV, we incorporate

their own data sets and empirically evaluate them against
naive mixture encoding under their own applications.

Data Sets. Specifically, we choose Mushroom data set
used in MTV [35] which is obtained from FIMI dataset
repository and U.S. Census data on Income or simply In-
come data set, which is downloaded from IPUMS-USA at
https://usa.ipums.org/usa/ and used in Laserlight [16]. The
basic statistics of the data sets are given in Table 2.

Table 2: Data Sets of Alternative Applications

Statistics Income Mushroom

# Distinct data tuples 777493 8124

# Features per tuple 9 21

Feature Binary-valued? no no

# Distinct features 783 95

Binary Classification Feature > 100, 000? Edibility

Assumed data tuple multiplicity 1 1

8.1 Experiments
All experiments involving Laserlight and MTV will be

evaluated under their own Error measures and data sets,
unless otherwise stated. The experiments are organized as
follows: First, we establish baselines by evaluating classical
Laserlight and MTV on their original data; Then we show
that classical Laserlight and MTV can be generalized to
partitioned data and that the generalization improves on
their Error measures and also runtime; At last, we compare
their generalized versions with naive mixture encoding to
show that naive mixture encoding is a reasonable alternative.

8.1.1 Error Measures
We first explain how naive mixture encoding is evaluated

based on Error defined by Laserlight and MTV.

Evaluating Naive Encoding on Laserlight Error. Al-
gorithm Laserlight summarizes data D which consists of fea-
ture vectors t augmented by some binary feature v. Denote
the valuation of the binary feature v for each feature vector
t as v(t). The goal is to mine a summary encoding E , which
is a set of patterns contained in t ∈ D that offer predictive
power on v(t). Denote the estimation (based on E) of v(t)
as uE(t) ∈ [0, 1], the Laserlight Error is measured by∑

t

(v(t) log(
v(t)

uE(t)
) + (1− v(t)) log(

1− v(t)

1− uE(t)
))

Since naive encoding Ë assumes feature independence, es-
timation of v(t) is independent of t, namely uË(t) = uË =
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|{τ |v(τ) = 1, τ ∈ D}|/|D|. Consequently, the Laserlight
Error of naive encoding is

−|D|(uË log uË + (1− uË) log(1− uË))

Evaluating Naive Encoding on MTV Error. Given
binary feature vectors D, the MTV Error of encoding E is

−|D|H(ρE) + 1/2|E| log |D|

where H(ρE) is the entropy of maximum entropy distribu-
tion ρE defined in Section 4.1. The second term in MTV
Error penalizes Verbosity of the encoding E . Since naive en-
coding assumes feature independence, we can first compute
entropy of the marginal distribution of each individual fea-
ture. Entropy H(ρE) is simply the sum of feature entropies.

Evaluating Naive Mixture Encoding. Evaluation of
naive encoding can be generalized to naive mixture by taking
a weighted average over resulting clusters (See Section 5.2).

8.1.2 Classical Laserlight and MTV
Establishing Baselines. To establish baselines, we eval-
uate Laserlight and MTV on their own data sets. The take-
aways from related experiments are that (1) naive encod-
ing is faster and more accurate than classical Laserlight and
MTV ; (2) the runtime increases superlinearly with the num-
ber of patterns mined from both Laserlight and MTV. For
detailed experiment results, we refer the reader to [45].

Anti-correlation and Dimentionality Reduction. Re-
call in Section 7.2.2 that Laserlight is restricted to 100 fea-
tures. For its own Income data set, Laserlight can be ap-
plied with its full set of 783 features. This is due to the prior
knowledge that the 783 features belong to 9 groups. In each
group, features are mutually anti-correlated which can be
reduced to a single feature. Similarly, Mushroom data set
can be reduced from 95 to 21 features.

8.1.3 Generalizing Laserlight and MTV
We generalize Laserlight and MTV on partitioned data

by applying them on each cluster. We then combine Errors
on all clusters by taking a weighted average, as described in
Section 5.2. Depending on how many patterns are mined
from each cluster, Laserlight and MTV can be generalized
into two types: (1) The number of patterns mined from each
cluster is scaled to be equal to Verbosity of the naive encod-
ing ; and (2) The total number of patterns mined from all
clusters is fixed to a given number. We name the first type
Laserlight (MTV) Mixture Scaled, which is comparable to
naive mixture encoding. We name the second type Laserlight
(MTV) Mixture Fixed, which is comparable to the classical
LaserLight (MTV) algorithm.

Take-away. As the data is partitioned into more clusters,
both runtime and Error of Laserlight (MTV) Mixture Fixed
exponentially decrease. This observation can be potentially
generalized to other pattern mining algorithms. For experi-
ment details, we refer the reader to [45].

8.1.4 Comparison with Naive Mixture Encoding
At last, we compare Laserlight (MTV) Mixture Scaled

with naive mixture encoding. Note that it is time-consuming
for Laserlight to mine the same number of patterns as naive
encoding on Income data (See runtime analysis in [45]), we
choose Mushroom data for Laserlight Mixture Scaled instead.
The experiment results are given in Figure 6. The x-axis for
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Figure 6: Naive Mixture v. Laserlight/MTV Mixture

all sub-figures in Figure 6 represents the number of clusters
and the y-axes stands for Laserlight and MTV Error respec-
tively. We incorporate baselines (i.e., naive encoding, clas-
sical Laserlight and MTV ) as reference lines in Figure 6a
and 6b respectively. We also experienced a limitation of
15 patterns for MTV. Hence the comparison between MTV
Mixture Scaled and naive mixture encoding is not strictly on
equal footing as MTV Mixture Scaled is not able to reach
the same Total Verbosity as naive mixture encoding. Note
that their difference in Verbosity is mitigated by the fact
that MTV Error measure penalizes encoding Verbosity.

Figure 6a shows that both naive mixture encoding and
Laserlight Mixture Scaled have lower Error than their base-
lines. In addition, Laserlight Mixture Scaled has lower Error
than naive mixture encoding when the number of clusters
is less than 4 and they become close after 6 clusters. In
other words, Laserlight is more accurate on lightly parti-
tioned data. As the data is further partitioned, clusters
become easier to summarize, and naive encoding becomes
more similar to Laserlight. Figure 6b shows that naive mix-
ture encoding marginally outperforms MTV Mixture Scaled.

Take-away. Naive mixture encoding is faster and has sim-
ilar (lower) Error than Laserlight (MTV) Mixture Scaled.

9. RELATED WORK
We aim at compressing query logs for accurately and effi-

ciently computing workload statistics. Before the discussion
of compression, we first review usecases and related work for
workload analysis.

9.1 Workload Analysis
Existing approaches related to workload analysis usually

aim at specific tasks like query recommendation [36, 17,
28, 46, 3], performance optimization [7, 11], outlier detec-
tion [25] or visual analysis [34].

Query Recommendation. This task aims at tracking
historical querying behavior and generating query recom-
mendations. Related approaches [36, 28] flatten a query ab-
stract syntax tree as a set of fragments [36] or snippets [28].
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User profiles are then built by grouping and summarizing
queries of specific users in order to make personalized rec-
ommendation. Under OLAP systems, profiles are also built
for workloads of similar OLAP sessions [3].

Performance Optimization. Index selection [13, 15] and
materialized view selection [2, 7, 11] are typical performance
optimization tasks. The configuration search space is usu-
ally large, but can be reduced with appropriate summaries.

Outlier Detection. Kamra et al. [25] aim at detecting
anomalous behavior of queries in the log by summarizing
query logs into profiles of normal user behavior.

Visual Analysis. Makiyama et al. [34] provide a set of
visualizations that facilitate further workload analysis on
Sloan Digital Sky Survey (SDSS) dataset. QueryScope [20]
aims at finding better tuning opportunities by helping hu-
man experts to identify patterns shared among queries.

In these approaches, queries are commonly encoded as
feature vectors or bit-maps where a bit array is mapped to
a list of features with 1 in a position if the corresponding
feature appears in the query and 0 otherwise. Workloads
under the bit-map encoding must then be compressed before
they can be efficiently queried or visualized for analysis.

9.2 Workload Compression Schemes
Run-length Encoding. Run-length encoding (RLE) is
a loss-less compression scheme commonly used in Inverted
Index Compression [43, 49] and Column-Oriented Compres-
sion [1]. RLE-based compression algorithms include but
not limited to: Byte-aligned Bitmap Code (BBC) used in
Oracle systems [6], Word-aligned Hybrid (WAH) [44] and
many others [37, 4, 5]. In general, RLE-based methods
focus on column-wise compression and requires additional
heavyweight inference on frequencies of cross-column (i.e.,
row-wise) patterns used for workload analysis.

Lempel-Ziv Encoding. Lempel-Ziv [47, 48] is the loss-
less compression algorithm used by gzip. It takes variable
sized patterns (row-wise in our case) and replaces them with
fixed length codes, in contrast to Huffman encoding [21].
Lempel-Ziv encoding does not require knowledge about pat-
tern frequencies in advance and builds the pattern dictionary
dynamically. There are many other similar schemes for com-
pressing files represented as sequential bit-maps, e.g. [41].

Dictionary Encoding. Dictionary encoding is a more
general form of Lempel-Ziv. It has the advantage that pat-
terns with frequencies stored in the dictionary can be in-
terpreted as workloads statistics useful for analysis. In this
paper, we extend dictionary encoding and focus on using a
dictionary to infer frequencies of patterns not in it. Mam-
paey et al. proposed MTV algorithm [35] that finds the dic-
tionary (of given size) having optimal Bayesian Information
Criterion(BIC) score. Gebaly et al. proposed Laserlight al-
gorithm [16] that builds a pattern dictionary for correctly
inferring the truth-value of some augmented binary feature.

Generative Models. A generative model is a lossy com-
pressed representation of the original log. Typical genera-
tive models are probabilistic topic models [8, 42] and noisy-
channel model [29]. Generative models can infer pattern
frequencies but they lack a model-independent measure for
efficiently evaluating overall inference accuracy.

Matrix Decomposition. Matrix decomposition meth-
ods including Principal Component Analysis (PCA) [24] and

Non-negative matrix factorization (NMF) [33] offer lossy
data compression. But the resulting matrices after decom-
position are not suited for inferring workload statistics.

10. CONCLUSIONS
In this paper, we introduced the problem of log compres-

sion and defined a family of pattern-based log encodings. We
precisely characterized the information content of logs and
offered three principled and one practical measures of en-
coding quality: Verbosity, Ambiguity, Deviation and Repro-
duction Error. To reduce the search space of pattern-based
encodings, we introduced the idea of log partitioning, which
induces the family of pattern mixture as well as its simplified
form: naive mixture encodings. Finally, we experimentally
showed that naive mixture encodings are more informative
and can be constructed more efficiently than state-of-the-art
pattern-based summarization techniques. We expect that
making accurate and efficient inference on pattern frequen-
cies will enable a range of more powerful database tuning
and intrusion detection systems.

11. FUTURE WORK
Multiplicity-aware clustering. As the number of feature
vectors can be millions or more, practically we only keep dis-
tinct feature vectors as input of clustering schemes. We can
store feature vector frequencies in a separate column called
multiplicities. A multiplicity-ignorant clustering scheme as-
sumes a uniform distribution of queries in the log. However,
query distributions p(Q) of production database logs are
usually skewed. For example, routine queries repeat them-
selves overwhelmingly in the log but contribute to a minority
of distinct queries. We plan to improve naive mixture en-
codings by exploring multiplicity-aware clustering schemes
such that distinct feature vectors can be clustered as if they
have been replicated. The use of mixture models for sum-
marization has potential implications for work on pattern
mining; As we show, existing techniques can be substan-
tially improved both in runtime and Error.

Feature Clustering. For the usecase of materialized view
selection, computing pattern frequencies may not be enough.
We may need to summarize a query log as a limited set of
basis views such that queries in the log can be represented
by a simple join of a subset of basis views. Capturing basis
views is not only relevant to data tuning tasks, but also facil-
itates human inspection of workloads in the log. To achieve
the goal, in addition to partitioning queries into separate
workload clusters, for each cluster we need to further parti-
tion its features into separate clusters where each cluster is
equivalent to a basis view.
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