
S-Isomap++: Multi Manifold Learning from Streaming Data

Suchismit Mahapatra
Computer Science and Engineering

State University of New York at Buffalo
suchismi@buffalo.edu

Varun Chandola
Computer Science and Engineering

State University of New York at Buffalo
chandola@buffalo.edu

Abstract—Manifold learning based methods have been
widely used for non-linear dimensionality reduction (NLDR).
However, in many practical settings, the need to process stream-
ing data is a challenge for such methods, owing to the high
computational complexity involved. Moreover, most methods
operate under the assumption that the input data is sampled
from a single manifold, embedded in a high dimensional
space. We propose a method for streaming NLDR when the
observed data is either sampled from multiple manifolds or
irregularly sampled from a single manifold. We show that
existing NLDR methods, such as Isomap, fail in such situations,
primarily because they rely on smoothness and continuity of the
underlying manifold, which is violated in the scenarios explored
in this paper. However, the proposed algorithm is able to learn
effectively in presence of multiple, and potentially intersecting,
manifolds, while allowing for the input data to arrive as a
massive stream.

Keywords-Manifold Learning; Streaming Data; Isomap;
Clustering;

I. INTRODUCTION

Ability to analyze massive streams of data is a valuable
aspect of any modern data science pipeline. This is im-
portant in many contexts, such as high-performance high-
fidelity numerical simulations [28], high-resolution scientific
instrumentation (microscopes, DNA sequencers, etc.) [29],
and even Internet of Things [31], where a huge number of
devices are currently connected to the Internet and feeding a
variety of data streams. Such data sources typically monitor
or measure complex system behaviors, using a large number
of parameters. Dimensionality reduction methods [30] are
typically used to map the resulting high-dimensional data
into a smaller, manageable space. If the data is assumed to
lie on a hyperplane, linear dimensionality reduction methods
such as Principal Component Analysis (PCA) [23], etc.,
maybe applied. However, in many settings, especially when
dealing with complex scientific and natural phenomenon,
the data might lie on a non-linear manifold, in which
case, non-linear dimensionality reduction methods are more
appropriate.

Non-linear dimensionality reduction(NLDR) comes at a
cost; most existing NLDR methods have a computational
complexity of O(n3), n being the size of the data. The
issue is further exacerbated when the data is streaming,
where obtaining exact solution at every step of the stream is

computationally infeasible. While adapatations of existing
NLDR methods, such as Isomap [1] and Local Linear
Embedding (LLE) [4], have been proposed for handling data
streams [10], [25], such methods, which typically rely on
incremental updates of the underlying solution, do not scale
well to massive streams. In a recent work [7], a two phase
strategy has been proposed to adapt Isomap to streaming
data. The algorithm, called S-Isomap, operates on the core
principle that a small batch of data is necessary to learn
the underlying small-dimensional manifold using an exact
and computationally expensive, but data-bounded, learning
method. The remainder of the stream may be mapped onto
the learnt manifold using a relatively inexpensive mapping
procedure.

However, the above solution, and other related efforts
to adapt NLDR methods to streaming data [10], rely on
the assumption that the data samples lie on a single low-
dimensional manifold. There have been limited attempts
that allow for multiple manifolds [13], [14], however, they
assume that the manifolds do not intersect in any ambient
space. This is illustrated in Figures 1 and 2. In Figure 1,
the synthetic data set in the top panel consists of four
“patches” in 2D space which are embedded onto different
regions of a 3D Swiss-Roll. Thus the 3D patches data set
maybe considered as the high-dimensional data set consist-
ing of samples from multiple manifolds. Direct application
of Isomap, which assumes that data comes from a single
manifold, results in poor recreation of the ground truth (Fig-
ure 1c). An existing method, M-Isomap [13], that explicitly
handles multiple manifolds, gives somewhat better results
(Figure 1d). In Figure 2, the synthetic data set consists
of data from two 2D manifolds embedded in a 3D space,
as an isometric swiss-roll and a plane, intersecting with
each other. In this case, both Isomap and M-Isomap fail
(Figure 2c), primarily because M-Isomap assumes that the
multiple manifolds do not intersect.

The core contribution of this paper is a streaming
non-linear dimensionality reduction algorithm, called S-
Isomap++. The algorithm assumes that the high dimensional
input data consists of samples that truly lie on one or more,
potentially intersecting, low-dimensional manifolds and are
embedded into the high dimensional space via non-linear
transformations. The proposed algorithm extends the widely
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(a) Original Data in 2D (b) Embedded Data (input) in 3D (c) Isomap Output

(d) M-Isomap Output (e) Proposed S-Isomap++ Output

Figure 1: Multi-manifold patches data set. The 2D samples in (a) are embedded into 3D in (b) via the Euler Isometric
mapping technique [7]. The reduction to 2D is obtained using: (c). Isomap, (d). M-Isomap [13], and (e). the proposed
S-Isomap++ algorithm.

used Isomap algorithm to handle multiple intersecting man-
ifolds in a streaming setting. Thus, the proposed algorithm
operates under one of the least restrictive set of assumptions,
explored so far in the context of NLDR methods (See
Figures 1e and 2d). Moreover, the ability to handle large
streams of data makes it highly applicable in a broad variety
of domains.

Another contribution of the paper is a novel tangent based
clustering strategy to separate samples from the input batch,
in the original high-dimensional space, into different clus-
ters. Each cluster is processed independently to obtain the
manifold and the corresponding low-dimensional reduction
of the corresponding data samples, using Isomap. The re-
duced data samples are then mapped into a common ambient
space by exploiting the relationship between the samples
across the clusters in the original space. The streaming
samples are then mapped, in parallel, on each manifold. An
evaluation strategy is employed to choose the best manifold
for each streaming sample.

The rest of the paper is organized as follows: we provide
necessary background about manifold learning in Section II.
Related works are discussed in Section III. The proposed
algorithm, S-Isomap++, is presented in Section IV. Exper-
imental results on synthetic and benchmark datasets, are

summarized in Section V.

II. BACKGROUND AND MOTIVATION

Our motivation for this work stems from one of the
foundation principles of Manifold Learning, which assumes
that the distribution of the data in the high-dimensional
observed space is not uniform and in reality, the data lies
near a non-linear low-dimensional manifold embedded in the
high-dimensional space. In many real-world problems such
as those resulting from multi-modal or unevenly sampled
distributions, the data lies on multiple manifolds of possibly
different “dimensionalities” and is typically separated by
regions of low density as depicted in Figure 3. Thus, to find
a representative low-dimensional embedding of the data, one
needs to first cluster the data appropriately and subsequently
find a low-dimensional representation for the data in each
cluster. Even then, manifolds can be very close to each other
and can have arbitrary intrinsic dimensions, curvature and
sampling which makes it a hard problem to solve.

A. Defining a Manifold

Mathematically, a manifold M is defined as a metric
space with the following property: if x ∈ M, then there
exists some neighborhood U of x and ∃n such that U is
homeomorphic to Rn [16].



(a) Original Data in 2D (b) Embedded Data (input) in 3D (c) Isomap/M-Isomap Output

(d) Proposed S-Isomap++ Output

Figure 2: Multi-manifold intersecting data set. One set of 2D samples (blue) in (a) are embedded into 3D in (b) via the
Euler Isometric mapping technique [7]. Second set (cyan) are embedded using a linear mapping. The reduction to 2D is
obtained using: (c). Isomap/M-Isomap, and (d). the proposed S-Isomap++ algorithm. Both Isomap and M-Isomap give the
same output because M-Isomap cannot handle intersecting manifolds and, thus, reverts to a single manifold scenario.

Figure 3: 2-D reduction of a sample of images from the
MNIST digits dataset. Real-world data generally lies near
multiple manifolds and is usually separated by regions of
low density.

The global structure of the high-dimensional ambient
space can be more complicated. Usually manifolds are
embedded in high-dimensional spaces, but the intrinsic
dimensionality is typically low due to fewer degrees of
freedom in the underlying data generating process.

B. Nonlinear Dimensionality Reduction

Typically, nonlinear dimensionality reduction (NLDR)
techniques are used as learning methods for discovering
the underlying low-dimensional structure from samples from
high-dimensional data. Existing techniques typically exploit
either the global (Isomap, Minimum Volume Embedding [5])
or local (LLE, Laplacian Eigenmaps [6]) properties of the
manifold to map each high-dimensional point xi ∈ RD to its
corresponding low-dimensional embedding, yi ∈ Rd. They
are used as a generic non-linear, non-parametric technique
to approximate probability distributions in high-dimensional
spaces.

The Isomap algorithm, being a global NLDR technique
should ideally provide a more faithful representation and
preserve geometry irrespective of scale i.e. map data samples
which are close in the manifold to points which are close
in the low-dimensional embedding and similarly for distant
samples. However, it struggles when dealing with multi-
modal and non-uniform distributions.

Most existing NLDR techniques, perform a similar series
of data transformations as shown in Figure 4. First, a
neighborhood graph is constructed, where each node of the
graph is connected to its k nearest neighbors. This involves
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Figure 4: General non-linear spectral dimensionality reduction workflow.

computing O(n2) pairwise distance values. Next, a feature
matrix is computed from this neighborhood graph, which
encodes properties of the data that should be preserved
during dimensionality reduction. For example, in the Isomap
formulation, the feature matrix stores shortest paths between
each pair of points in the neighborhood graph, which is an
approximation of the actual geodesic distance between the
points. The cost to compute the feature matrix generally
varies in the range O(n) and O(n3). To obtain the low rep-
resentation of the input data, the feature matrix is factorized
and the first d eigen vectors/values form the output Y . This
step has a O(n3) cost.

When used on data streams, NLDR methods typically
have to recompute the entire manifold for every new stream-
ing data point, which is computationally expensive. In such
scenarios, there is the need for incremental techniques
(Out-of-Sample technique [10], S-Isomap [7]), which can
process the new streaming points “cheaply”, compared to
the traditional batch techniques without affecting the quality
of the embedding significantly.

C. Handling Multiple Manifolds

In the ideal scenario, when manifolds are densely sam-
pled and sufficiently separated, existing NLDR methods
can be extended to perform clustering before applying the
dimensionality reduction step [13], [18], by choosing an
appropriate local neighborhood size so as not to include
points from other manifolds and still be able to capture the
local geometry of the manifold. However, if the manifolds
are close or intersecting (See Figures. 2, 6), such methods
typically fail.

III. RELATED WORK

Most existing NLDR techniques can only deal with a
single manifold which leads to them discovering error-prone
low dimensional embeddings given inter-manifold distances
are usually much larger than the intra-manifold distances.

Wu et al. [20] was among the earliest attempts to work
with multiple manifolds via NLDR techniques. Since then,
other sophisticated approaches [11], [13], [15], [17], [24]
have emerged, apart from techniques in the area of manifold
alignment [9], [22] and manifold clustering [2], [13]. Some
assumed a supervised setting [11], [17], and learn multiple
sub-manifolds corresponding to different given classes in
a dataset. The MMDA method [15] is based on Locality
Preserving Projections. Similarly, the SMCE algorithm [24]
makes assumptions about sparsity and linearity of the em-
bedding.

There have been earlier attempts to cluster sub-
manifolds [2], [13], which are primarily based on the idea
of forming a graph with edges only between a node and
its nearest neighbors. However, these methods cannot deal
with intersecting manifolds when it is possible for the local
neighborhood of a point to have nearest neighbors from
different sub-manifolds. Manifold alignment approaches [9],
[22] typically align manifolds using a set of correspondences
between data points. Whereas [9] uses Procrustes Analy-
sis, [22] tries to solve a constrained embedding problem,
where the embeddings of the corresponding points from
different sets are constrained to be identical.

In a batch setting, the M-Isomap [13] algorithm comes
close to our proposed work. The algorithm attempts to work
with multiple manifolds embedded in a high-dimensional
space. First, it performs clustering to identify the indi-
vidual sub-manifolds via a nearest neighbor approach and
subsequently runs Isomap on each of these sub-manifolds.
Finally, it stitches the sub-manifolds together via a set
of support points, by finding an optimal transformation
between the embeddings uncovered by Multidimensional
Scaling(MDS) [21] and Isomap, respectively. However, the
nearest neighborhood clustering strategy employed can mis-
represent individual sub-manifolds if they are intersecting
and/or very close to each other by grouping them together
(See Figure 2).

IV. METHODOLOGY

There are two key challenges that a streaming manifold
learning algorithm has to address: 1) handle streaming data
in a scalable manner, and, 2) learn in presence of multiple,
possibly intersecting, manifolds.

The proposed S-Isomap++ algorithm follows the two-
phase strategy proposed in our earlier work [7], where we
first learn exact manifolds from an initial batch, and then
employ a computationally inexpensive mapping method to
process the remainder of the stream. An error metric is
used to decide on when to switch from expensive and exact
learning to inexpensive and approximate mapping [7]. To
address the second challenge, we first cluster the batch
data using a tangent-based manifold clustering approach and
then apply exact Isomap on each cluster. The resulting low-
dimensional data for the clusters is then stitched together
to obtain the data reduced to a low (and closer to true)
dimensionality.

The overall S-Isomap++ algorithm is outlined in Algo-
rithm 1. The algorithm takes a batch data set, B and the



streaming data, S as inputs such that, B,S ∈ RD. Note that
in practical applications, one might not have data split into
batch and streaming parts. In that scenario, one may track the
quality of the output of the batch phase using suitable error
metrics [7], and switch when a reliable solution for the batch
is obtained. For simplicity, we will assume that the optimal
batch size has been pre-determined. The processing is split
into two phases: a batch learning phase (Lines 1–12) and
a streaming phase (Lines 13–20). The batch learning phase
consists of three steps:
• Step 1: Cluster samples in B into p clusters (Line 1).
• Step 2: Learn p individual manifolds corresponding to

each cluster, and map samples within each cluster to a
low-dimensional representation1 (Lines 6–7).

• Step 3: Map reduced samples from individual manifolds
into a global reduced space (Lines 8–12).

In the streaming phase, each sample in the stream set S is
mapped onto each of the p manifolds by using an inexpen-
sive mapping procedure (Lines 14-17). The nearest manifold
is identified by comparing each reduced representation of
the sample to the “center” of each manifold (Line 18), and
choosing the corresponding reduced representation for the
stream sample (Line 19).

The individual components of the proposed S-Isomap++
algorithm are discussed in the subsequent subsections.

A. Clustering Multiple Intersecting Manifolds

The objective of the first step in Algorithm 1 is to
separate the batch samples into clusters, such that each
cluster corresponds to one of the multiple manifolds present
in the data. Note that, in this paper, we do not assume that
the number of manifolds (p) is specified; it is automatically
inferred by the clustering algorithm. In cases of uneven/low
density sampling, the clustering strategy discussed might
possibly generate many small clusters. In such cases, one
can try to merge clusters, based on their affinity/closeness
to allow the number of clusters to remain within required
limits. Given that the batch samples lie on low-dimensional
and potentially intersecting manifolds, it is evident that the
standard clustering methods, such as K-Means [27], that
operate on the observed data in RD, will fail in correctly
identifying the clusters.

To handle this challenge, we propose a novel clustering
algorithm that is based on the notion of smoothness of mani-
fold surfaces. Consider a single batch data sample, xi ∈ RD.
Let N (xi) be the set of k nearest neighbor samples of xi in
the batch B. Let Ti denote a d′ dimensional tangent plane
represented using d′ basis vectors, ti1, ti2, . . . , tid′ , i.e.,
Ti = span(ti1, ti2, . . . , tid′). Here, d′ denotes the intrinsic

1The true dimensionality of the manifolds corresponding to the clusters
can vary. We assume that the true dimensionality for each cluster has been
determined using techniques such as studying the spectral properties of
the geodesic distance matrix computed as part of Isomap learning (See
Figure 5).

Algorithm 1 S-Isomap++

Input: Batch dataset: B, Streaming dataset: S; Parameters:
ε, k, l, λ

Output: YS : low-dimensional representation for S
1: Ci=1,2...p ← FIND CLUSTERS(B, ε)
2: ξs ← ∅

3: for 1 ≤ i ≤ p do
4: LDE i ← ISOMAP(Ci)
5: end for

6: ξs ←
p⋃
i=1

p⋃
j=i+1

NN(Ci, Cj ,k) ∪ FN(Ci, Cj , l)

7: GEs ← MDS(ξs)

8: for 1 ≤ j ≤ p do
9: I ← ξs ∩ Cj

10: A ←
[
LDEIj
eT

]
11: Ri, ti ← GEI,s ×AT

(
AAT + λI

)−1
12: end for

13: for s ∈ S do
14: for 1 ≤ i ≤ p do
15: yis ← S-ISOMAP(s, Ci)
16: GE is ← Riyis + ti
17: end for

18: index ← argmini
∣∣yis − µ(Ci,Ri, ti)∣∣

19: YS ← YS ∪ yindexs

20: end for

21: return YS

dimensionality of the tangent plane. We assume that each
xi belongs to a single manifold Mj ,∃j ∈

{
1, 2 . . . p

}
.

The proposed clustering algorithm (Algorithm 2) is based
on the following intuition: For a given sample, xi, and its
neighbor xj ∈ N (xi):

If Mi =Mj ⇒ φ(Ti, Tj) ≥ ε (1)

φ(Ti, Tj) = cos θ, where θ is the angle between the two
tangent planes2, Ti and Tj . Similarly,

If Mi 6=Mj ⇒ φ(Ti, Tj) < ε (2)

In other words, within a tight neighborhood, a given data
sample and its neighbors are expected to lie on tangent
planes that are approximately similar in orientation, and,
thus, the cosine of the angle between the two planes will be
closer to 1 (cos θ ≈ 1). However, if a sample’s neighborhood

2Ti and Tj are the tangent planes for the samples xi and xj .



Algorithm 2 Tangent Manifold Clustering
1: function FIND CLUSTERS(B, ε)
2: Si=1,2...n ← MSVD(B)
3: labels ← 0n×1
4: idx ← 1
5: while labelsi=1,2...n 6= 0 do
6: Cidx, labels ← CLUSTER(B,S, labels, idx, ε)
7: idx ← idx + 1
8: end while
9: return Ci=1,2...p

10: end function

Algorithm 3 Incremental Partitioning Strategy
1: function CLUSTER(B,S, labels, index, ε)
2: Cindex ← ∅, Cold ← ∅
3: I ←

{
i|labelsi = 0

}
, idx ∼ RANDOM(I)

4: Cindex ← Cindex ∪ Bidx
5: Cold ← Cold ∪ Bidx, labelsidx ← index
6: countnew ← 1, mode = ‘L1’

7: while countnew > 0 do
8: countnew ← 0, Cnew ← ∅

9: for ∀i ∈ Cold do
10: Iknn ← KNN(B, i)
11: for ∀j ∈ Iknn do
12: if labelsj = 0 then
13: simi,j ← SIM(Si, Sj , mode)
14: if simi,j ≥ ε then
15: Cnew ← Cnew ∪ Bj
16: labelsj ← index
17: countnew ← countnew + 1
18: end if
19: end if

20: end for
21: end for

22: Cindex ← Cindex ∪ Cnew, Cold ← Cnew
23: end while

24: return Cindex, labels
25: end function

contains samples that lie on other intersecting manifolds,
their tangent planes should be significantly different, and
cos θ � 1.

1) Learning a Tangent Plane for a Given Sample: We use
Multiscale Singular Value Decomposition (or MSVD [12])
on the local neighborhood of xi, to determine basis vectors,
ti1, ti2, . . . , tid′ , which define the tangent plane, Ti. Use

of SVD allows us to follow the intuitions expressed in (1)
and (2), since it explores directions in which the spread of
points is maximal. In the presence of multiple intersecting
manifolds, these directions get mangled up, whereas non-
intersecting regions have better agreement with regards to
principal directions.

MSVD allows us to deal with the problem of estimating
the intrinsic dimension of noisy, high-dimensional point
clouds. For the linear case, SVD analysis can estimate the in-
trinsic dimensionality ofM correctly, with high probability.
However, whenM is a nonlinear manifold, curvature forces
the dimensionality of the best-approximating hyperplane to
be much higher, which hinders attempts to uncover the true
intrinsic dimensionality of M.

MSVD estimates the intrinsic dimensionality of M by
computing the singular values, σz,ri for all ∀z ∈ M at
different scales r > 0 and i ∈ {1, 2, . . . D}. Small values of
r lead to not enough samples in B(z, r), while large values
of r lead to curvature making the SVD computation over
estimate the intrinsic dimensionality. At the right scale (value
of r), the true σz,ri ’s separate from the noise σz,ri ’s due to
their different rates of growth and the true dimensionality
of M is revealed. Figure 5 demonstrates how σz,ri behave
over different scales when MSVD is done a noisy R5 sphere
embedded in R100 ambient space. Notice how the noise
dimensions decay out, leaving only the primary components
at the appropriate scale.

2) Computing Angle Between Two Tangent Planes: We
explore several strategies of computing the similarity be-
tween a pair of tangent planes, Ti and Tj . As mentioned
earlier, this is equivalent to computing the cosine of the
angle between the two planes. We consider one approach,
as proposed by Gunawan et al. [3]. Let Ti and Tj be
orthonormal subspaces3. If θ is the angle between Ti and
Tj , then:

φ(Ti, Tj) = cos θ =
√
det(NN>) (3)

where N is a matrix, such that N [u][v] = 〈tiu, tjv〉, where
tiu is the uth basis vector for Ti and tjv is the vth basis
vector for Tj . Additionally, when the dimensionality of Ti
and Tj is same, the expression simplifies to:

φ(Ti, Tj) = cos θ = |det(N )| (4)

Alternately, one can use the following procedure. Without
loss of generality, let us assume that ti1, ti2, . . . , tik are the
singular vectors for the plane Ti corresponding to the top
k singular values. Similarly, let tj1, tj2, . . . , tjk be the top-
k singular vectors for the plane Tj . Then we can compute

3One can use QR factorization to orthonormalize any subspace, which
is not already orthonormal.



φ(Ti, Tj) as:

φ(Ti, Tj) =
1

k

k∑
l=1

|t>il tjl| (5)

We refer to the above as the L1 metric. In the same way,
one can define the L2 metric as:

φ(Ti, Tj) =

√√√√1

k

k∑
l=1

(t>il tjl)
2 (6)

3) Tangent Manifold Clustering Algorithm: The proposed
tangent manifold clustering strategy is outlined in Algo-
rithm 2. Algorithm 3 is the support method to the above.
The inputs to the Algorithm 2 are the batch dataset B and
a threshold value ε.

Algorithm 2 initially calls MSVD(·) (See Section IV-A1)
on the input batch set, B, to decide on an appropriate scale r
to use and subsequently to extract the top-k singular vectors
Si=1,2...n for all xi ∈ B, at the scale r. Initially all points are
unlabeled i.e. labels is all zeros initially. Algorithm 2 calls
CLUSTER(·) repeatedly till all xi ∈ B have labels assigned
to them, which represents the different clusters, Ci for i =

1, 2 . . .m where
m⋃
i=1

Ci = B.

Algorithm 3, which contains the function CLUSTER(·)4,
works as follows: it picks a currently unlabeled xi at
random, and assigns it to a new cluster Cindex. Subsequently,
it looks at the unassigned nearest neighbors of xi i.e.
xj ∈ N (xi) and checks to see how close their tangent
planes are. If they are similar enough i.e. the similarity
score φ(Ti, Tj) ≥ ε, then the unassigned nearest neighbor
is assigned to Cindex. The algorithm proceeds similarly in a
breadth-first manner till no new points remain to be tested.

It internally calls Algorithm SIM(·) to measure similarity,
using one of the three strategies, discussed in Section IV-A2
(See (4), (5), and (6)).

B. Processing multiple manifolds

The S-Isomap++ algorithm independently learns the man-
ifolds for each cluster (Lines 3–5). However, since these
manifolds are not necessarily aligned with respect to each
other, an additional step is needed to represent the reduced
samples from each cluster into a common space. We refer to
this process as stitching, and is essential to recreate the final
reduced representation. This step, similar to the approach in
M-Isomap, maintains the information of the global location
of different manifolds using a set of support points which
form the skeleton on which it can later places the different
manifolds. This support set is formed using the k nearest
neighbor pairs as well as the l farthest neighbor pairs
between every pair of manifolds present i.e. ∀{Ci, Cj}j 6=i, let

4We use ‘L1’ as the mode by default (Line 6) since it provides the best
accuracy.

Figure 5: Multiscale SVD on a noisy R5 sphere embedded
in R100 ambient space.

Algorithm 4 Similarity between tangent planes between
points

1: function SIM(Si, Sj , mode)
2: ηi=1,2...k ← extract(Si)
3: κi=1,2...k ← extract(Sj)
4:
5: if mode = ‘L1′ then
6: score ← 1

k

∑k
i=1

∣∣ηiTκi∣∣
7:
8: else if mode = ‘L2′ then
9:

10: score ←
√∑k

i=1
1
k (ηi

Tκi)2

11:
12: else if mode = ‘HG′ then
13: Mη ← matrix(ηi=1,2...k)
14: Mκ ← matrix(κi=1,2...k)
15:
16: M ← Mη

TMκ

17: score ← |det(M)|
18: end if
19:
20: return score
21: end function



Xi,j ∈ R|Ci|×|Cj | denote the RD Euclidean distance matrix
between all points in clusters Ci and Cj , then support set
ξs contains the co-ordinates (index sets Ii and Ij from Ci
and Cj respectively) of both the smallest k values as well
as the largest l values in Xi,j . The former are calculated by
method NN(·) and the latter FN(·) (Line 6). Subsequently, a
global reduced space embedding GEs for this support set is
calculated using MDS (Line 7). After this, for each manifold
Mj ,∃j ∈

{
1, 2 . . . p

}
, a least-squares problem is solved to

generate the transformation components Ri, ti which can
project reduced samples from each cluster into the global
space (Lines 8–12).

C. Mapping Streaming Samples

In the streaming part, each sample in the stream set
S is mapped onto each of the p manifolds in parallel,
using the inexpensive S-ISOMAP(·) algorithm proposed in
our earlier work [7] (Line 15) and subsequently mapped
to the global space using {Ri, ti} ∃i ∈

{
1, 2 . . . p

}
(Line

16). The nearest manifold is identified by comparing each
reduced representation of the sample to the mean µ(·) of
each manifold (Line 18), and choosing the corresponding
reduced representation for the stream sample (Line 19).

V. RESULTS AND ANALYSIS

A. Experimental Setup

We present several experiments here on a variety of
data sets to illustrate the behavior of different approaches
proposed in the Section IV.

We use four different datasets in our experiments. Given
swiss roll datasets are typically used for evaluating manifold
learning algorithms, we use the Euler Isometric Swiss Roll
dataset, proposed by Schoeneman et al. [7], wherein a R2

data set having n = 3000 points, chosen at random, are
embedded into R3 using a non-linear function ψ(·). We
use this in conjunction with a R3-dimensional hyperplane
passing through it as shown in Figure. 2b having n = 1500
points, chosen at random. We know the ground truth for
both parts (See Figure. 2a). We use this to evaluate the S-
Isomap++ algorithm as shown in Figure. 2. We also use an
extension of this, wherein two R3-dimensional hyperplanes
pass through the Isometric Swiss Roll, wherein the points
are chosen in random and each hyperplane has n = 3000
points, as shown in Figure. 6.

Apart from this, we use different artificial datasets con-
sisting of intersecting manifolds i.e. two intersecting R3-
dimensional unit hyperspheres, having n = 1000 points each
and a R3-dimensional plane intersecting a R3-dimensional
hypersphere, again having n = 1000 points each, as shown
in Figure. 7. We use these datasets to test our tangent
manifold approach more rigorously. We also use patches on
the Euler Isometric Swiss Roll dataset (Figure. 1) which
are Gaussian in nature, to study the effect of the different

parameters, apart from evaluating our algorithm, as well as
the MNIST digits dataset.

Our evaluation metrics for the experiments primarily focus
on 1) ability on our tangent manifold clustering strategy
to be able to cluster points from multiple intersecting/non-
intersecting manifolds correctly, 2) test the quality of the
embedding uncovered by our algorithm, for the streaming
dataset S, with regards to agreeability with ground truth
via an appropriate distance metric, as well as, tightness of
clustering and last but not the least, 3) scalability of our
algorithm over different sizes of both batch and streaming
datasets B and S respectively.

B. Results on Artificial Datasets

1) Gaussian patches on Isometric Swiss Roll: Figures. 1c,
1d, 1e demonstrate the results with this dataset for Isomap,
M-Isomap and our approach respectively. Both the M-
Isomap and S-Isomap++ algorithms can deal with individual
manifolds better than Isomap, which severely deforms the
individual clusters. It should also be noted that whereas both
the M-Isomap and S-Isomap++ algorithms required small
values of k i.e. k = 8 to operate, Isomap needed values of
k ≥ 500 to even work. As a consequence, idiosyncrasies
i.e. short-circuiting become a factor to distort the uncovered
embedding. M-Isomap has scaling issues and can only seem
to attempt to position the individual manifolds in the global
ambient space correctly, without being able to recreate the
spread, which defined the individual manifolds. We think
that M-Isomap internally normalizes individual manifolds
which results in this behavior. Our approach, S-Isomap++ is
the most robust in its recreation of the ground truth.

2) Intersecting Swiss-roll with R3-dimensional plane:
Figure. 2 demonstrates our experiments with this dataset.
We evaluate different algorithms to see how well they
recreate the ground truth (Figure. 2a). Both Isomap and M-
Isomap produce the same output, given M-Isomap employs
a nearest-neighbor based clustering strategy to disambiguate
between manifolds, and hence is unable to handle inter-
secting manifolds, which results in highly distorted recre-
ations of the ground truth. As before, S-Isomap++ produces
the most robust recreation of the ground truth. Figure 6,
demonstrates how well S-Isomap++ recreates the original
manifolds, in case the batch B is clustered correctly. M-
Isomap/Isomap are unable to recreate the ground truth and
severely contort the ground truth.

3) Tangent Manifold Clustering: Here we present cluster-
ing results for intersecting manifolds. (See Figures. 2, 7 for
the different datasets). Table I below demonstrates accuracy
values5 with which the L-1, L-2 metric schemes proposed in
this work, along with the technique proposed by Gunawan et

5Gunawan’s approach was unable to distinguish between the intersecting
manifolds scenarios and always clustered them as one and hence its
accuracy was 0.5 in all cases.



Figure 6: Top Left: Actual manifolds in R3 space, clustered
to demonstrate individual manifolds, Top Right: Recreation
by Isomap/M-Isomap, Bottom Row: Recreation by our ap-
proach, S-Isomap++.

Figure 7: Left: Original datasets unclustered, Right: Clus-
tered using the proposed tangent clustering method.

al. [3] clustered the different intersecting manifolds. The L-
2 metric performed much better than Gunawan’s approach,
however the L-1 metric performed the best. The accuracy
values are also indicative of the level of difficulty associated
with clustering the different scenarios correctly.

Method L-1 L-2 Gunawan
Sphere-Sphere 0.825 0.619 0.5
Sphere-Plane 0.759 0.602 0.5

Swiss Roll-Plane 0.838 0.621 0.5

Table I: Accuracy scores for the different tangent manifold
clustering approaches.

4) Effect of different parameters: Here we present results
of the effect of changing the different parameters of the
S-Isomap++ algorithm, while keeping all other parameters

Figure 8: Effect of changing λ. Top Left: λ = 0.01, Top
Right: λ = 0.02, Bottom Left: λ = 0.04, Bottom Right:
λ = 0.16

fixed. Figures 8, 9, 10, demonstrates the effect of parameter
λ, k and l on the embeddings uncovered by the S-Isomap++
algorithm. Larger values of k seems to make the manifolds
more uniform or rounded. Larger values of parameter l
seem to stretch the manifolds. Parameter λ seem to separate
the manifolds apart when it has larger values. This is
really interesting since it means we can use it to visualize
manifolds better on account of separability.

Figure 11 demonstrates the scalability of our algorithm
with regards to streaming data S. Batch B having size
n = 2000 was used for this experiment. The timing results
are in log scale and clearly demonstrate the efficiency
gained. M-Isomap has the same result as Isomap since
it cannot distinguish between intersecting manifolds and
treats them as one. While the run-time for Isomap/M-Isomap
increases rapidly with increasing stream size, the run time
for S-Isomap++ does not grow much at all, making it highly
conducive to large stream processing.

C. Results on MNIST Dataset

Table II below shows results for different digits of the
MNIST dataset. Using a batch dataset B of size n = 2000,
a streaming dataset S of size m = 4000 was recreated in
3D by the S-Isomap++ algorithm, for each of the digits.
Subsequently the 3D recreation was compared to the 3D
ground truth obtained by running Isomap on all digits, using
the Procrustes Error metric to measure the quality of the
recreation.

The Procrustes Error metric determines an optimal align-
ment between two matrices X and Y and returns a goodness-
of-fit criterion, based on sum of squared errors. As the results
below demonstrate, the recreation error is pretty low, even
after embedding in the common global space. This shows
the efficacy of the S-Isomap++ algorithm.



Figure 9: Effect of changing k. Top Left: k = 8, Top Right:
k = 16, Bottom Left: k = 24, Bottom Right: k = 32

Figure 10: Effect of changing l. Left: l = 1, Right: l = 4

digit ‘0’ 0.0296 digit ‘3’ 0.0364 digit ‘6’ 0.0476
digit ‘1’ 0.0806 digit ‘4’ 0.0586 digit ‘8’ 0.0712
digit ‘2’ 0.0499 digit ‘5’ 0.0449 digit ‘9’ 0.0498

Table II: Procrustes error values for different digits of the
MNIST dataset, computed by comparing the original with
3D recreation via S-Isomap++.

VI. CONCLUSION

The proposed S-Isomap++ algorithm allows for scal-
able non-linear dimensionality reduction of streaming high-
dimensional data. By allowing for the samples to belong
to multiple manifolds, or sampled non-uniformly from a
single manifold, we have developed an algorithm that can
be applied to a wide variety of practical settings. Moreover,
the two-phase strategy for streaming Isomap, first proposed
in [7], and adapted here for multiple manifold learning,
allows us to scale a computationally intensive algorithm
(Isomap) to arbitrarily large streams.

The ability to cluster data lying on multiple intersecting
manifolds is a key innovation, proposed as the Tangent
Manifold Clustering algorithm, allows us to automatically
identify the number of underlying manifolds. One limitation
of the method, however, is that it assumes that all manifolds
are represented in the batch data set, which means that a
novel manifold behavior that might appear subsequently in
the stream, will not be learned. This issue will be studied in

Figure 11: The results are in log scale and demonstrate the
scalability of our proposed algorithm.

future research.
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[26] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[27] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A
review. ACM Comput. Surv., 31(3):264–323, 1999.

[28] Mojie Duan, Jue Fan, Minghai Li, Li Han, and Shuanghong
Huo. Evaluation of dimensionality-reduction methods from
peptide folding–unfolding simulations. Journal of chemical
theory and computation, 9(5):2490–2497, 2013.

[29] Y. Ruan, G.L. House, S. Ekanayake, U. Schutte, J.D. Bever,
H. Tang, and G. Fox. Integration of clustering and multidi-
mensional scaling to determine phylogenetic trees as spherical
phylograms visualized in 3 dimensions. In IEEE/ACM Int.
Symp. Clust. Cloud Grid Comput., pages 720–729, 2014.

[30] Laurens Van Der Maaten, Eric Postma, and Jaap Van den
Herik. Dimensionality reduction: a comparative review.
Journal of Machine Learning Research, 10:66–71, 2009.

[31] Feng Chen, Pan Deng, Jiafu Wan, Daqiang Zhang, Athana-
sios V. Vasilakos, and Xiaohui Rong. Data mining for the
internet of things: Literature review and challenges. Interna-
tional Journal of DSN, 11(8), 2015.

[32] Dorin Comaniciu and Peter Meer. Mean shift: A robust
approach toward feature space analysis. IEEE Transactions
on PAMI, 24(5):603–619, 2002.


	I Introduction
	II Background and Motivation
	II-A Defining a Manifold
	II-B Nonlinear Dimensionality Reduction
	II-C Handling Multiple Manifolds

	III Related Work
	IV Methodology
	IV-A Clustering Multiple Intersecting Manifolds
	IV-A1 Learning a Tangent Plane for a Given Sample
	IV-A2 Computing Angle Between Two Tangent Planes
	IV-A3 Tangent Manifold Clustering Algorithm

	IV-B Processing multiple manifolds
	IV-C Mapping Streaming Samples

	V Results and Analysis
	V-A Experimental Setup
	V-B Results on Artificial Datasets
	V-B1 Gaussian patches on Isometric Swiss Roll
	V-B2 Intersecting Swiss-roll with R3-dimensional plane
	V-B3 Tangent Manifold Clustering
	V-B4 Effect of different parameters

	V-C Results on MNIST Dataset

	VI Conclusion
	VII Acknowledgment
	References

