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Abstract Longitudinal disease subtyping is an important problem within the broader scope of computational
phenotyping. In this article, we discuss several data-driven unsupervised disease subtyping methods to obtain
disease subtypes from longitudinal clinical data. The methods are analyzed in the context of Chronic Kidney
Disease, one of the leading health problems, both in the US and worldwide. To provide a quantitative com-
parison of the different methods, we propose a novel evaluation metric that measures the cluster tightness
and degree of separation between the various clusters produced by each method. Comparative results for two
significantly large clinical datasets are provided, along with key insights that are possible due to the proposed
evaluation metric.
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1 Introduction

With the increasing availability of Electronic Health Records (EHR) data for research and analysis, compu-
tational phenotyping has become an emergent and significant topic in the area of Health Informatics [4]. One
approach that has been explored in the context of computational phenotyping is to identify groups of patients
that exhibit similar disease progression as captured by the clinical observations present in EHR data. Many
recent papers in this area have formulated the task of subgroup identification as an unsupervised clustering
problem [5]. The objective is to cluster patients into groups based on their longitudinal EHR data, such that
each cluster represents a distinct disease progression which can then be studied to identify a common disease
mechanism (a phenotype).

However, applying standard clustering algorithms, such as k-means, to EHR data is not straightforward.
The primary reason is that most of these algorithms require a similarity metric to compare the data for a pair of
patients. If one analyzes disease progression in terms of a single disease marker, the problem will become a time
series clustering task [9]. Given that such time series are typically sparse, irregularly sampled, and misaligned,
(see Figure 1 for an example) applying standard time series similarity measures such as cross-correlation,
Dynamic Time Warping (DTW), etc., are ill-suited in this context.

In other words, we want to cluster the patients into groups with similar disease progression and further
identify the underlying mechanism in each cluster. Few methods have been proposed to solve this clustering
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Fig. 1: Disease progression profiles (Estimated Glomerular Filtration Rate) of two patients suffering from
Chronic Kidney Disease (CKD). Data obtained from DARTNet database [15].

problem. In particular, Schulam et al. proposed Probabilistic Subtyping Model (PSM) [20], a disease progression
model that can probabilistically assign patient into clusters (disease subtypes, phenotypes) by analyzing the
patient lab measurements and explaining away the effect of different covariates. Luong and Chandola [11] also
introduced a k-means clustering approach to cluster patients based on their disease progressions. Singh et
al. [21] followed another approach that imputes the missing values in the irregularly sampled time series and
used traditional time series clustering method such as Partition Around Medoid (PAM) to group the patient
longitudinal profiles into clusters. In another study, Baytas et al. [1] used a sequence model called T-LSTM
Auto-encoder to project the set patient longitudinal profiles into an embedded space and apply k-means
clustering to cluster the embedded representations. Although these methods can give reasonable clustering
results, they all require the number of clusters to be known in advance. In many cases, there is no clear
evidence to choose the number of clusters, thus, hindering the use of these methods in practice. In addition,
we also need to decide a set of basis or requirements that we can use to assess the quality of a clustering result
obtained from a particular disease subtyping model. As a result, there is a rising need for a quantitative and
objective approach to judging the quality of clustering result. In particular, given a clustering assignment, we
need to measure the “goodness-of-fit” of individual patient profile. In this article, we address these challenges
by introducing a quantitative evaluation metric that can help us evaluate the quality of the clustering result,
both globally as a set of patient profiles and locally as an individual patient profile.

In the literature of clustering evaluation [22, Chapter 17], there are two main approaches to evaluate the
clustering result. One is external evaluation in which we use external information such as ground-truth of cluster
assignments or other external characteristics associating with the subjects being clustered to evaluate the
purity of each cluster with respect to those characteristics. Another alternative approach is internal evaluation
in which we measure the clustering result by the tightness of each cluster as well as the degree of separation
between neighboring clusters. In the context of longitudinal disease subtyping, external evaluation of clustering
result can be done by examining the distribution of diagnosis codes or medications or demographics of patients
assigned to a specific cluster. However, there is a lack of internal evaluation of disease subtypes, in the sense
of cluster’s tightness and degree of separation between clusters. Our approach aims to fill this missing piece
by introducing an internal evaluation metric that can judge the quality of clustering result in terms of the
cluster’s tightness and degree of separation between clusters.

In traditional clustering settings, Silhouette coefficient is a common quantitative measure of the quality of
clustering result [17]. However, this measurement cannot be used directly to evaluate the clusters of disease
progression. Therefore, in this article, we develop a longitudinal Silhouette coefficient (abbreviate as longSil)
based on the concept of Silhouette coefficient, which can help us evaluate the clustering result. It is the key
contribution of this article. This evaluation metric also allows us to perform a large-scale comparative study
for multiple subtyping methods in the context of Chronic Kidney Disease.
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The remainder of the article is structured as follows. In Section 2, we discuss the existing evaluation
approaches that have been used to evaluate the quality of longitudinal disease subtypes and explain why we
need a new evaluation metric. In Section 3, we propose an evaluation metric, longSil, to assess the quality
of longitudinal disease subtypes. In Section 4, we provide details of various longitudinal disease subtyping
methods that we will use for comparison. In Section 5, we present experimental results obtained by using our
evaluation metric to assess the performance of different subtyping methods. In Section 6, we further discuss
the advantages and limitations of our proposed metric. Finally, in Section 7, we give a conclusion to our study.

2 Background

In this section, we further explain the need of an evaluation metric for longitudinal disease subtypes by
examining evaluation approaches that have been done in prior studies and identifying the missing piece that
we plan to fill in this article.

A most common way that people have used to evaluate the resulting disease subtypes is to characterize
disease progressions in each subtype and align those progressions with an existing medical understanding
of the specific disease [11, 13, 18, 20, 21]. This characterization of disease subtypes often includes narrative
descriptions of general trends in the subtypes as well as numerical quantities such as rate of increase/decrease
and baseline values. However, besides providing readers better understanding of the discovered subtypes,
this characterization approach does not provide enough evidence to evaluate whether a disease subtype is
distinctively different from the others and worth further analysis on its clinical relevance.

Another evaluating approach often found in prior studies is by examining the prediction power of the
proposed model [1, 11, 19, 20]. It is important to note that although most disease subtyping methods are
unsupervised learning models, as they need to take into account the temporal dependency between observations
as well as patient covariates, they can be effectively used as prediction models. Evaluating the prediction power
of a model can help us assess whether the model correctly captures the characteristics of data. However, from
a perspective of evaluating the quality of resulting disease subtypes, the prediction power may not reflect
the quality of subtypes in terms of differences between subtypes as well as how distinctive a subtype is in
comparison with others.

To capture the difference between one subtype and the others, prior studies have used statistical tests to
check whether one subtype is significantly different from the others [1, 13, 18]. These tests use external data
such as demographic information or other clinical markers that have not been used in learning the disease
subtypes. This approach is useful to understand how a subtype disease is different from others and allows us to
have more evidence to further investigate interesting disease subtypes. The only missing piece in this approach
is that it only works with external data. It is important to note that sometimes we are more interested in
evaluating the disease subtypes using the original data itself rather than the external data. Therefore, the main
theme of this article is to propose an evaluation metric of longitudinal disease subtypes by using the original
data itself.

3 Evaluation metric

In this section, we discuss an evaluation metric to validate the clusters of longitudinal patient profiles output
from any disease subtyping methods. First, in Section 3.1, we briefly review the concept of Silhouette coefficient
and its role in assessing clustering result. In Section 3.2, building on top of Silhouette coefficient, we define
longSil coefficient and provide a formulation for it.

3.1 Review of Silhouette coefficient

Silhouette coefficient was first introduced by Rousseeuw in 1987 as a graphical aid to validate the clustering
result [17]. Since then, it has been used substantially as a validation technique to evaluate the quality of the
clustering result. In the formulation of Silhouette coefficient, every data point being clustered is evaluated by
two measures: (1) tightness - how close a data point is with respect to all other data points in the same cluster
and (2) degree of separation - how far away a data point is from the closest neighboring cluster.

In particular, given a set of n subjects with corresponding cluster assignments, Silhouette coefficient mea-

suring the quality of cluster placement for each individual i is computed as s(i) = b(i)−a(i)
max(a(i),b(i)) where the
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tightness a(i) is measured as the average distance from i to all other subjects in the same cluster and the
degree of separation b(i) is measured as the shortest average distance from i to any clusters different from
its own cluster. In the above formulation, the range of a Silhouette coefficient is between −1 and 1. s(i) > 0
means that the subject i is closer to its assigned cluster than its closest neighboring cluster. On the other hand,
s(i) < 0 indicates that subject i is closer to the neighboring cluster than its own - an indication of incorrect
cluster placement for subject i. When s(i) = 0, the subject i lies on the border between its own cluster and
its closest neighboring one. Therefore, Silhouette coefficient can be used as a validation measure for clustering
placement of each subject i in the dataset.

Besides the use of inspecting clustering quality for each individual subject in the dataset, the Silhouette
coefficient can also be used to assess the overall clustering result by computing the average Silhouette coefficient
across all subjects. As a result, for any clustering result, we can compute its average Silhouette coefficient and
use it to quantify the quality of clustering result.

3.2 longSil coefficient

Although Silhouette coefficient works reasonably well for traditional clustering results, it cannot be easily
translated to an evaluation of longitudinal disease subtypes because of an assumption of a distance metric
between any pairs of subjects. In clinical datasets, the laboratory measurements are sparse and irregularly
sampled (see Figure 1). As a result, given two longitudinal patient profiles, there is no trivial way to compute
the distance between them. Therefore, we propose an alternative metric, denoted as longSil - longitudinal
Silhouette coefficient to assess the quality of longitudinal disease subtypes.

In order to avoid computing pairwise distance between longitudinal patient profiles, one may note that in
the measure of tightness a(i) and degree of separation b(i) for individual i, we actually compute the relative
distance between subject i and sets of many other subjects. This allows us to take an alternative definition of
tightness a(i) and degree of separation b(i) based on the distance between a longitudinal patient profile and a
set of multiple profiles.

In a prior study of Luong and Chandola [11], the authors computed the distance between a longitudinal
profile and a cluster by representing a cluster of multiple profiles as a common regression line and compute
the total of squared vertical distances between clinical observations and corresponding values in the regression
line. In this article, we follow a similar strategy of representing a set of multiple longitudinal profiles as a
regression line. However, instead of using the total of squared vertical distances as a measure of distance, we
use the average of squared vertical distances between observations and corresponding values on the regression
line. This allows the contribution of each observation in the patient profile to be treated equally across different
patients.

Given a dataset of clinical observations, we denote ni as the number of observations of lab measurement
that patient i takes. The vector of observations of patient i is denoted as xi = [xi,1, · · · , xi,ni

]T while ti =
[ti,1, · · · , ti,ni

]T is the vector of corresponding timestamps.

Given a clustering result of N patients into K clusters, we denote c(i) ∈ {1, · · · ,K} as the cluster that
the patient i is assigned to. We also define C̄(i) = {1, · · · ,K} \ c(i) as the set of clusters that patient i is not
assigned to.

Each cluster k is represented by a regression line using all observations of all patients assigned to it. This

regression line of cluster k is formulated as fk(t) =
∑L

l=1 β
(k)
l Φl(t) where Φ(·) = {Φ1(·), · · · , ΦL(·)} is the set

of L basis functions and β(k) = {β(k)
1 , · · · , β(k)

L } is the set of corresponding coefficients. For a vector of input
timestamps ti ∈ Rni of patient i, we denote Φ(ti) = [Φ1(ti), · · · , ΦL(ti)] ∈ Rni×L as a matrix in which lth

column is obtained by applying basis function Φl(·) to each element of vector ti.

With the above notations, we define the tightness for patient profile i with respect to its own cluster a(i)
as the average of squared vertical distances between observations and corresponding values in the regression
line:

a(i) =
1

ni

∥∥∥xi −Φ(ti)β̂
(c(i))

∥∥∥2

2
(1)

In the above formula, β̂(c(i)) is the vector of coefficients of basis functions for the set of patients belonging to
the same cluster of patient i (excluding patient i).
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We also define the degree of separation for patient profile i as the closest distance from it to all other
clusters that it is not assigned to:

b(i) = min
k∈C̄(i)

1

ni

∥∥∥xi −Φ(ti)β
(k)
∥∥∥2

2
(2)

Using these two new formulations of a(i) and b(i), the longSil coefficient for patient profile i is defined
similarly to the Silhouette coefficient:

longSil(i) =
b(i)− a(i)

max(a(i), b(i))
(3)

Similar to Silhouette coefficient, longSil coefficient also ranges between −1 and 1 with higher value indicates
better clustering quality.

4 Longitudinal Subtyping Methods

In this section we discuss four longitudinal subtyping methods that we will evaluate in the experiments including
(1) Probabilistic Subtyping Model (PSM) [20], (2) Temporal K-means [11], (3) Spline Induced Clustering [21]
and (4) Time-Aware LSTM Auto-encoder [1]. These methods all have a set of patient longitudinal profiles as
inputs. In particular, a patient longitudinal profile is defined as a set of clinical measurements and corresponding
timestamps of these measurements. In the context of Chronic Kidney Disease, we consider eGFR as a main
clinical measurement. For PSM, an additional input it has is gender information which is used as a covariate
for modeling patient disease progression. Furthermore, we also need to provide a number of subtypes for these
three subtyping methods so that they can partition a set of patients into clusters. The output of these four
methods are partitions of patients in which each cluster contains patients with similar disease progression.
In the case of PSM, it returns probabilistic assignments of patients into clusters. One can effectively convert
these probabilistic assignments into partitions by assigning patients into a cluster in which has the highest
probability.

4.1 Probabilistic Subtyping Model (PSM)

Schulam et al. [20] first introduced this method to identify disease subtypes by “explaining away” other effects.
In particular, this method models patient disease progression as a combination of a few separate effects. At
a population level, there is a covariate effect that captures the effect of various types of patient covariates
such as gender, age group or smoking behavior. Within the scope of this article, we only consider gender
as a relevant covariate to include in the model. At an individual level, there are individual long-term effect
and individual short-term effect. The long-term effect is used to model individual long-term health condition.
On the other hand, a temporary health condition that may affect clinical measurements is modeled as a
short-term effect. We also have a disease subtype effect, which is modeled to capture the effect of disease
subtype in which many patients share similar disease progression. The overall disease progression is obtained
by adding all the aforementioned effects. As a result, a probabilistic inference problem is solved by using an
Expectation-Maximization approach.

4.2 Temporal K-means

Luong and Chandola [11] proposed this algorithm as a variant of k-means clustering method to cluster patients
with similar disease progressions. The algorithm starts with an initialization step by randomly assigning
patients into k clusters. After that, it iteratively performs two steps: (1) update step - using current cluster
assignments to compute the cluster and (2) assignment step - assigning patients into closest clusters. The
algorithm stops when it converges or maximum iteration is reached. Although the temporal k-means and
original k-means have substantial overlap, temporal k-means has two main differences from the original k-
means algorithm: (1) the “cluster centroid” is computed as a regression line fitted by using all observations of
all patients currently assigned to the cluster and (2) the distance between a longitudinal patient profile and
cluster is measured by the sum of squared vertical distances between observations and the corresponding values
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in the regression line which represents the cluster. This total vertical distance is also the quantity which the
algorithm optimizes in their objective function. The temporal k-means can also be viewed as a hard-clustering
version of PSM when only the subtype effect is in consideration.

One can notice that the quantity in the objective function of temporal k-means is similar to the quantity
a(i) in equation (1), except that quantity a(i) in equation (1) uses the average instead of the sum as in temporal
k-means. As a result, almost all longSil coefficients computed from the result of this method are greater than
zero. However, the k-means algorithm, in their formulation, doesn’t attempt to optimize the separation between
clusters, which sometimes return clusters with little difference.

Similar to the experiment setting in Luong and Chandola’s study [11], in our experiment, ten cubic b-spline
basis functions are used with an addition of the intercept term. The knots are chosen based on quantiles of
the set of all timestamps in the dataset. The temporal k-means algorithm is run with three different random
initializations and the best result among the three is returned. For each random initialization, the algorithm
is run until convergence achieves or when the number of iteration exceeds 100.

4.3 Spline Induced Clustering

Singh et al. [21] introduced this method to cluster patient disease progression while compensating for missing
values which are common in EHR data. By applying data augmentation, missing values in time series of clinical
observations are imputed. The algorithm starts with an estimation of values of the clinical marker over the full
range of observations by implementing a statistical spline regression. By transforming the longitudinal disease
profile into a continuous curve using spline regression, there is an estimation of the clinical marker at every
point in time.

Because time series clustering methods require observations to be present at equal distances, the imputed
value in a time series was computed from the spline regression in a consistent interval. Next, a dissimilarity
matrix between different patient profiles is computed. Each entry in this matrix is obtained by calculating
dissimilarity between two time series of imputed values with Euclidean distance as the distance metric.

Using this dissimilarity matrix, Partitioning Around Medoids (PAM) clustering algorithm was used to
obtain clusters of time series. PAM is a clustering method similar to K-means. However, PAM works with
medoids which represent the dataset in groups while K-means works with centroids which are artificially
created entities that represent clusters. The PAM algorithm partitions the dataset of n objects into k clusters
by minimizing the distance between points assigned to a cluster and a point evaluated as the center of the
cluster (medoid).

4.4 Time-Aware LSTM Auto-encoder

Baytas et al. [1] attempted to summarize the longitudinal patient profiles by projecting them into a latent
space and perform k-means algorithm with the new embedded representations of patients. The underlying
model of this approach is Time-Aware Long Short-Term Memory (T-LSTM) - a variant of recurrent neural
networks which focuses on modeling sequences. The embedded representation is obtained by using two T-
LSTM structures, one for encoding patient clinical observations into a latent space and one for decoding this
representation to reconstruct the original clinical observations. The parameters of the model are trained so
that the reconstruction error is minimized. This is an auto-encoder approach in which longitudinal patient
profile is encoded into a latent space and later being reconstructed from the latent representation. In the
experiments, we use the hidden unit at the last time step of the encoder to represent the patient profile as
given in the original study of Baytas et al. [1]. In addition, we set the dimension of the hidden unit in T-LSTM
Auto-encoder to be 64 as suggested in Luong and Chandola’s study [12] in which they used the same CKD
datasets.

5 Experiments

In this section, we present our experimental results with different subtyping methods. In particular, Section 5.1
explains the datasets that we will use in our experiments. Next, in Section 5.2, we qualitatively evaluate longSil
in four typical clustering results, each with a subtyping method to see if this measure reflects well the quality
of clustering results. Finally, in Section 5.3, we use our proposed quantitative evaluation metric to compare
the performance of different subtyping methods.
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Original patient set
DARTNET dataset: 69,817 patients
MIMIC III dataset: 46,520 patients

Invalid birth year and sex 
value Number of creatinine 

records < 1

Invalid data records

“Preprocessed” patients 

Having eGFR values less than 60 for 
more than three months

Final CKD cohort
DARTNET dataset: 7,142 patients
MIMIC III dataset: 3,082 patients

Number of serum creatinine 
records < 10

Excluded
Excluded

Excluded

Observation duration < 1 
year

Excluded
Excluded

Fig. 2: Preprocessing procedure to obtain CKD cohort

5.1 Data

The datasets we use in this article are subsets of two larger datasets, called DARTNet [15] and MIMIC-
III [6]. The DARTNet dataset was collected by a federated network of electronic clinical data from multiple
organizations across the United States which contains health information of nearly 70,000 patients having
various degree of kidney damage. One the other hand, MIMIC (Medical Information Mart for Intensive Care)
is a large, openly available database containing de-identified health record of 46,520 patients who admitted
to critical care units at a large tertiary care hospital [6]. From these datasets, we extract sets of patients
having Chronic Kidney Disease (CKD) - a rising health problem in both the US and worldwide. As CKD
is a chronic disease with heterogeneous disease progressions, extracting the longitudinal disease subtypes will
enable further research on the underlying mechanism of each subtype and subsequently tailor the treatment for
each subtype. In CKD, one main indicator of disease severity is estimated Glomerular Filtration Rate (eGFR)
that measures the condition of the kidney [14]. The eGFR value can be estimated using the CKD-EPI equation
which takes into account serum creatinine measure as well as patients’ age, sex and race [8]. In our experiment,
a longitudinal profile of a patient is a set of eGFR observations with the corresponding timestamps in which the
first few eGFR observations are under 60 for more than three months - a criterion used for determining stage
3 CKD according to clinical guidelines [14]. This criterion of choosing the beginning of patient longitudinal
profile can be considered as selecting the patients who are transitioning to stage 3 CKD as well as the set of
existing CKD patients in stage 3, 4 and 5. To ensure that patients have enough eGFR observations within a
long enough time span to understand their disease progression, we only retain patients with at least one year
of eGFR observations since their first eGFR records and having at least ten serum creatinine observations.
Figure 2 shows an outline of preprocessing steps to obtain CKD cohort in DARTNet and MIMIC-III datasets
which is similar to one in the study of Luong and Chandola [11]. This preprocessing step results in patient
cohorts of 7, 142 patients and 3, 082 patients in DARTNet and MIMIC-III datasets respectively. It is also
worth to mention that as MIMIC-III dataset was collected from patients who admitted to critical care units,
its data distribution is different from DARTNet dataset. In particular, as shown in Table 1, although DARTNet
dataset has more patients than MIMIC-III, DARTNet dataset has fewer eGFR observations in comparison
with MIMIC-III and the average time span for each patient’s eGFR trajectory in DARTNet dataset is also
much longer than the one in MIMIC-III dataset.
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5.2 Qualitative evaluation of longSil

In this section, we inspect some typical subtyping results and see how longSil coefficient reflects the quality
of the results. In each of the following sections, a clustering result obtained from each subtyping method is
inspected. In order to demonstrate the use of longSil in capturing the desired characteristics of clustering result,
we chose the number of clusters K in each experiment so that both high quality and low quality clustering
results are included in the experiment.

In all of our experiments, we use ten cubic b-splines as the set of basis functions for our longSil evaluation
metrics. The knots are chosen based on quantiles of the set of all timestamps in the dataset. Although other
choices of basis functions can be considered and empirically evaluated, in our experiments, we only consider
b-splines as our basis functions. Further evaluation of other basis functions will be a topic for future research.

5.2.1 PSM with 6 clusters on MIMIC-III dataset

In this experiment, we evaluate the clustering result of PSM with 6 clusters on MIMIC-III dataset and assess
how the qualitative clustering evaluation is reflected in quantitative measure longSil. The resulting subtypes
obtained by PSM is shown in Figure 3a. As we can observe from the figure, within each cluster, the longitudinal
profiles vary widely and there is no clear trend in each cluster. In addition, based on the clustering result as
shown in Figure 3a, there is no clear distinction to distinguish one cluster against another.

As explained earlier, PSM is a probabilistic model in which subtyping effect is only a component of the
model. Beside this subtyping effect, there are other effects including demographic effects as well as individual
effects coupled within the model. Therefore, the resulting subtypes as shown in Figure 3a may not represent
clear trends of progressions in CKD.

In Figure 3b, the distribution of longSil for this clustering result is shown. In the figure, there are many
negative values of longSil coefficients which signals that many longitudinal profiles are closer to other clusters
rather than its own. This leads to an overall low average longSil coefficient in the result. From this experiment,
we see that average longSil coefficient can be used as a gauge for the quality of clustering result.

0 200 400 600 800 1000

0
2

0
4

0
6

0
8

0
1

2
0

Cluster 1

day

e
G

F
R

683 patients (22.16%)

0 200 400 600 800 1000

0
2

0
4

0
6

0
8

0
1

2
0

Cluster 2

day

e
G

F
R

453 patients (14.70%)

0 200 400 600 800 1000

0
2

0
4

0
6

0
8

0
1

2
0

Cluster 3

day

e
G

F
R

212 patients (6.88%)

0 200 400 600 800 1000

0
2

0
4

0
6

0
8

0
1

2
0

Cluster 4

day

e
G

F
R

644 patients (20.90%)

0 200 400 600 800 1000

0
2

0
4

0
6

0
8

0
1

2
0

Cluster 5

day

e
G

F
R

344 patients (11.16%)

0 200 400 600 800 1000

0
2

0
4

0
6

0
8

0
1

2
0

Cluster 6

day

e
G

F
R

746 patients (24.21%)

(a) Resulting disease subtypes (only 50 patient
profiles are shown for each cluster)

−1.0

−0.5

0.0

0.5

1.0

individual patient

lo
n
g
S

il

cluster

1

2

3

4

5

6

(b) Distribution of longSil coefficients (red dotted line indicate the average
longSil coefficient)

Fig. 3: Subtyping result output from PSM with k = 6 in MIMIC-III dataset (Best viewed in color)

5.2.2 Temporal K-means with 2 clusters on DARTNet dataset

The resulting subtypes obtained by performing Temporal K-means on DARTNet dataset with k = 2 is shown
in Figure 4a. In the figure, cluster 1 has higher eGFR values in comparison with cluster 2. In fact, the mean of
eGFR values across all observations in cluster 1 is 53.6 while the corresponding mean for cluster 2 is 34.5. The
two resulting clusters as shown in Figure 4a seems to have both qualities that we consider in the evaluation of
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clustering result: tightness and separation. The two clusters are both tight in capturing similar progressions. In
addition, they are distinctive from each other. This observation is then reflected in the distribution of longSil
as shown in Figure 4b. In this figure, almost all patients have positive longSil value which indicates that they
are assigned into correct clusters. This is because the objective function in Temporal K-means has a step that
directly optimizes for the tightness of cluster. In particular, the assignment step of Temporal K-means assigns
the patient into a cluster such that the total sum of the squared vertical distance between observations and
the corresponding values in the regression line of the cluster is minimized.
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Fig. 4: Subtyping result output from Temporal K-means with k = 2 in DARTNet dataset (Best viewed in
color)

5.2.3 Splince Induced Clustering with 6 clusters on MIMIC-III dataset

In this experiment, we use Spline Induced Clustering to cluster CKD patient profiles into four clusters. Figure 5a
shows the resulting clusters obtained by this method. Similar to the case of PSM with 6 clusters shown in
Section 5.2.1, the resulting clusters do not exhibit any clear trends of progressions in CKD. In addition,
the clusters are also not well separated. This may suggest that the missing value imputation step in Spline
Induced Clustering may fail to estimate the missing values in patient trajectories and consequently leads to
poor clustering result.

The corresponding longSil coefficients of this clustering result are shown in Figure 5b. This reflects well
the quality of our clustering result with many negative longSil values and the overall negative value of average
longSil coefficient.

5.2.4 T-LSTM Auto-encoder with 4 clusters on DARTNet dataset

We now examine another clustering result obtained by using T-LSTM Auto-encoder to project longitudinal
patient profiles into the latent space and use these embedded representations to perform K-means clustering
with 4 clusters to obtain clusters of patient profiles. Figure 6a shows the CKD profiles of four clusters. One can
observe from this figure that although the four clusters are highly overlapped with similar overall trends, the
trajectories of CKD profiles in each cluster are tight and follow a similar trend. In other words, one may judge
that this clustering result has high cluster tightness while suffering from a low degree of separation between
clusters. This observation can also be seen in Figure 6b that shows the distribution of longSil coefficients
for the set of CKD patients. Overall, the average longSil coefficient is positive with many individual longSil
coefficients are positive indicating the majority of CKD are assigned to their closest clusters while there is
also a set of patients with negative longSil coefficients that are probably incorrectly assigned to the clusters
because of overlapping clusters.

5.3 Quantitative comparison of different subtyping methods using longSil coefficient

In the previous section, we have observed how well longSil coefficient can capture the quality of clustering result
in terms of cluster tightness and degree of separation between clusters. Furthermore, the overall distribution
of longSil can be summarized by average longSil coefficient, which captures the overall quality of a clustering
result. In this section, we further use this average longSil coefficient to compare the clustering results of four
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Fig. 5: Subtyping result output from Spline Induced Clustering with k = 6 in MIMIC-III dataset (Best
viewed in color)
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Fig. 6: Subtyping result output from T-LSTM Auto-encoder with k = 4 in MIMIC-III dataset (Best viewed
in color)

methods as described in Section 4. In our experiment, we let the number of subtypes span from 2 to 15 and
compute the average longSil coefficient for each case.

Figure 7 shows the comparison between four longitudinal disease subtyping methods in terms of their
average longSil values in two datasets (DARTNet and MIMIC-III). As a reminder, a higher value of average
longSil coefficient indicates better result, in terms of overall cluster’s tightness and degree of separation.
Moreover, average longSil coefficient below zero may indicate overall incorrect placement of patient profiles.

As we can observe from Figure 7, Temporal K-means consistently has better results in comparison with
the others, in both datasets, across different numbers of clusters. This is not surprising as Temporal K-means
shares some common computational objectives with longSil - our evaluation metric. Temporal K-means directly
optimizes for cluster tightness by assigning patient profile into the closest cluster. In addition, both Temporal
K-means and longSil represent the cluster by a regression line using all observations of patient profiles assigned
to it. Therefore, Temporal K-means always achieves positive values for average longSil coefficients as shown
in Figure 7.
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Fig. 7: Comparison of three longitudinal disease subtyping methods with different number of clusters in
terms of average longSil cofficient (Best viewed in color)

DARTNet MIMIC-III
Number of patients 7, 142 3, 082

Number of eGFR records 113, 097 153, 471
Average eGFR records per patient 15.8 48.8

Average time span of clinical records of a patient 1744.4 days 826.4 days

Table 1: Some differences between cohort in DARTNet and MIMIC-III dataset

Regarding the performance of PSM in this comparison, one may observe that it performs well in DARTNet
dataset with positive average longSil coefficients but it fails to obtain good results in MIMIC-III dataset. This
contrasting performance between two different datasets may originate from the differences between the two
datasets. Table 1 highlights some differences between patient cohort in DARTNet and MIMIC-III datasets. In
particular, the cohort in MIMIC-III dataset has a significantly fewer number of patients in comparison with
one in DARTNet dataset. In addition, the average of eGFR records per patient in MIMIC-III dataset is 48.8
while its counterpart in DARTNet dataset is only 15.8. Moreover, the average time span of clinical records
in MIMIC-III dataset is much shorter (826.4 days) in comparison with DARTNet dataset (1, 744.4 days).
Therefore, having fewer patients, having more eGFR observations per patient, and having a shorter time span
in clinical records are the three potential causes to the undesirable results of PSM in MIMIC-III dataset.

In our comparison, the only method that has consistent negative values of average longSil coefficients across
two datasets is Spline Induced Clustering method. Probably the approach of imputing missing values by using
spline regression is not suitable for CKD datasets as observations are sparse and the number of observations
needs to be imputed is too many which results into a poor estimation of the patient eGFR progressions and
subsequently poor clustering result.

Among the four methods we used in the comparison, T-LSTM Auto-encoder is the only method that does
not attempt to group patients based on their disease progressions directly. Instead, it models the temporality
in the sequences of eGFR observations and focuses on finding embedded representations such that they can
reconstruct well the original sequences. The representations are later used as inputs of K-means algorithm to
find groups of patients that are close to each other in the latent space. It is interesting to examine whether
the proximity in the latent space also reflects the proximity in CKD progressions between different patients.
As shown in Figure 7, in both DARTNet and MIMIC-III dataset, T-LSTM Auto-encoder represents well the
clusters of CKD progressions with positive longSil coefficients for the number of clusters from 2 to 10. As the
number of clusters increases, the performance deteriorates. When the number of clusters exceeds 8, the average
longSil coefficient becomes negative as the quality of clustering result no longer reflects well the progression
of eGFR values.

In Figure 7, one can observe a general trend of decreasing average longSil value as we increase the number
of clusters across all four subtyping methods. In the original formulation of Silhouette coefficient in traditional
clustering, the average Silhouette coefficient for a clustering result can be peaked at the optimal number of
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clusters [10, 17]. However, with the new formulation of longSil coefficient for evaluating clustering longitudinal
profiles, it seems that the average longSil value will follow the decreasing trend as we increase the number of
clusters. This decreasing trend makes the choice for an optimal number of clusters less viable with longSil.
However, given the same number of clusters, longSil is still a reliable measure for evaluating the quality of
different clustering results as it effectively captures the overall cluster’s tightness and degree of separation
between clusters.

6 Discussion

The derived longitudinal disease subtypes obtained from subtyping methods are usually difficult to analyze,
especially when we want to assess its clinical relevance for further analysis. As shown in the experimental
results in Section 5, our proposed evaluation metric gives a good indication of the quality of clustering result.
It reflects well the cluster tightness and degree of separation between clusters. It allows us to quickly identify
interesting sub-groups of patients that are tight and highly distinctive from other patients. This can be used
as an augmentation for traditional cluster evaluation to detect groups of patients with interesting disease
progressions.

When using longSil to compare different models, it is important to note that we inherently assume the
set of basis functions that represent the disease progressions of patients within a cluster. In our experiment,
we use splines as the set of basis functions. However, depending on different datasets and different diseases,
another set of basis functions may be better used. Also, in our evaluation metric, we only use the progressions
of one clinical marker to evaluate the quality of the clustering result. In many diseases, the disease progressions
are complex with many underlying factors including demographic, phenotypic physiological characteristics of
patients. This requires a more complex evaluation process to identify whether disease subtypes are clinically
relevance. In particular, for the case of evaluating the disease subtypes with multiple clinical markers, one
can extend the clustering quality measure to cope with multiple clinical markers by computing the clustering
quality measure with respect to each single clinical marker and subsequently combine them with some weights
indicating the importance of each respective clinical marker in the overall quality measure.

In section 5.2, we have evaluated the quality of longSil with some specific clustering results obtained from
different algorithms. Another way to evaluate the quality of longSil as a clustering evaluation metric is to
validate it against external clustering validation which brings external data of patients such as demographics,
historical medications, and diagnoses into consideration. However, for the case of CKD disease, it is not
trivial to pick relevant external information from patients’ medical records to compare against the clustering
result. Such validation will require further research to identify relevant causes or underlying mechanisms that
enable CKD progression among the patients in the same cluster to be similar. Therefore, within the scope of
this article, we cannot adopt this approach of validating longSil using external clustering validation. In the
future, when we have a further understanding of CKD, we can use that information to further reinforce our
understanding of the longSil as a computational method to evaluate the groups of patients with similar disease
progression.

Besides the use of evaluating the quality of subtyping result obtained from a subtyping method, longSil can
also be used as a tool to diagnose different problems of the results. In particular, by examining the distribution
of degree of separation or cluster tightness, an algorithm designer can have a better understanding of their
subtyping model and have a better idea of improving the model.

In the literature of internal clustering validation measure, Silhouette coefficient is only an approach among
many quantitative approaches that measure the quality of clustering result based on the concept of cluster
tightness and degree of separation between different clusters [10]. As we built our quantitative measure based
on a regression line that allows us to represent a cluster of longitudinal profiles and subsequently use it to
compute the distance between a longitudinal profile and a cluster, the same methodology can also be used to
adapt many other internal clustering validation measures for the problem of clustering longitudinal profiles. In
our future works, we will further study the differences between different internal clustering validation measures
in the context of clustering longitudinal profiles.

It is also worth to mention that in addition to internal clustering validation, a holistic evaluation of different
subtyping methods will require them to evaluate with external data such as medical outcomes, demographic
distribution or diagnosis codes. In separate studies [11, 13, 21], three subtyping methods including PSM,
Temporal K-means and Spline Induced Clustering have been evaluated in the context of CKD with various
external data. However, a comprehensive evaluation across different subtyping methods using external data will
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need a different methodology to systematically compare between different methods with different experiment
settings. As the focus of this article is internal clustering evaluation, a comparison between different subtyping
results with external data will be the topic of future research.

Among four disease subtyping methods we examine in this article, T-LSTM Auto-encoder is the only
method that uses deep learning to embed patient longitudinal profiles into a latent space. Beyond T-LSTM
Auto-encoder, there are also many other deep learning approaches to embed longitudinal EHR profiles into
a latent space. However, many of the approaches use diagnosis codes and medication codes as their primary
inputs for the model [2, 3]. Although diagnosis codes and medication codes can also be leveraged in analyzing
EHR data, in the context of CKD, as our primary clinical marker is eGFR - a laboratory value that measures
of kidney function, the methods of obtaining patient embeddings via diagnosis codes and medication codes of
longitudinal EHR data cannot be used directly. In another study of Lasko et al. [7], the author used Gaussian
Process Regression to transform a noisy, irregularly sampled and sparse observations of a longitudinal profile
into a continuous longitudinal probability distribution. For each longitudinal profile, a set of small patches
of mean values of the inferred probability distribution with the same length is extracted to train an auto-
encoder to learn the hidden representation of each input patch. Although this method can infer the hidden
representation of an input patch, it is not clear how to combine the set of hidden representation of multiple
patches to construct a hidden representation for a longitudinal profile. In a different study [16], raw EHR data
are represented based on Fast Healthcare Interoperability Resources (FHIR) format and subsequently used for
training deep learning models to predict various clinical outcomes. Although its approach can obtain strong
performance in multiple supervised tasks, the paper provides little insights on how to use such an approach to
represent patient longitudinal profiles.

7 Conclusion

In this article, we have introduced a new quantitative and objective evaluation metric that can assess the
quality of longitudinal disease subtypes. This evaluation metric can capture both the notion of the cluster’s
tightness as well as the degree of separation between different clusters. Moreover, the distribution of individual
longSil coefficients can also be visualized as a graphical aid for validating longitudinal disease subtypes. Using
this proposed evaluation metric, we have performed a comparison between four available longitudinal disease
subtyping methods including Probabilistic Subtyping Model, Temporal K-means, Spline Induced Clustering,
and Time-Aware LSTM Auto-encoder. The experiments show that our proposed evaluation metric reflects
well the quality of result obtained from a subtyping model and allows us to gauge the performance of different
subtyping models when applying for Chronic Kidney Disease datasets.
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