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Abstract—Database access logs are the starting point for many forms of database administration, from database performance tuning,
to security auditing, to benchmark design, and many more. Unfortunately, query logs are also large and unwieldy, and it can be difficult
for an analyst to extract broad patterns from the set of queries found therein. Clustering is a natural first step towards understanding
the massive query logs. However, many clustering methods rely on the notion of pairwise similarity, which is challenging to compute for
SQL queries, especially when the underlying data and database schema is unavailable. We investigate the problem of computing
similarity between queries, relying only on the query structure. We conduct a rigorous evaluation of three query similarity heuristics
proposed in the literature applied to query clustering on multiple query log datasets, representing different types of query workloads. To
improve the accuracy of the three heuristics, we propose a generic feature engineering strategy, using classical query rewrites to
standardize query structure. The proposed strategy results in a significant improvement in the performance of all three similarity
heuristics.
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1 INTRODUCTION

DATABASE access logs are used in a wide variety of
settings, including evaluating database performance

tuning [1], benchmark development [2], database audit-
ing [3], and compliance validation [4]. Also, many user-
centric systems utilize query logs to help users by providing
recommendations and personalizing the user experience [5],
[6], [7], [8], [9], [10]. As the basic unit of interaction between
a database and its users, the sequence of SQL queries that
a user issues effectively models the user’s behavior. Queries
that are similar in structure imply that they might be issued
to perform similar duties. Examining a history of the queries
serviced by a database can help database administrators
with tuning, or help security analysts to assess the possibil-
ity and/or extent of a security breach. However, logs from
enterprise database systems are far too large to examine
manually. As one example, a recent study of queries at a
major US bank for a period of 19 hours found nearly 17
million SQL queries and over 60 million stored procedure
execution events [3]. Even excluding stored procedures, it is
unrealistic to expect any human to manually inspect all 17
million queries per day.

Let us consider an analyst (call her Jane) faced with
the task of analyzing such a query log. Jane might first
attempt to identify some interesting query fragments and
their aggregate properties. For example, she might count
how many times each table is accessed or the frequency
with which different classes of join predicates occur. Un-
fortunately, such fine-grained properties lack the context to
clearly communicate how the data is being used, combined,
and/or manipulated. To see the complete context, Jane
must look at entire queries. Naively, she might look at all
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distinct query strings in the log. Even comparatively small
production databases typically log hundreds or thousands
of distinct query strings, making direct inspection impracti-
cal. Furthermore, it is unclear that distinct query strings are
the right level of granularity in the first place. Consider the
following example queries:

1) SELECT name FROM user
WHERE rank IN (’adm’,’sup’)

2) SELECT SUM(balance) FROM accounts
3) SELECT name FROM user WHERE rank = ’adm’

UNION SELECT name FROM user
WHERE rank = ’sup’

4) SELECT SUM(accounts.balance) FROM accounts
NATURAL JOIN user WHERE user.rank = ’adm’

Queries 1 and 2 are clearly distinct: Their structures dif-
fer, they reference different datasets, and perform different
computations. The remaining queries however are less so.
Query 3 is logically equivalent to Query 1: Both compute
identical results. Conversely, although Query 4 is distinct
from Queries 1 and 2, it is conceptually similar to both and
shares many structural features with each.

The exact definition of similarity may depend on Jane’s
exact task, the content of the log, the database schema,
database records, and numerous other details, some of
which may not be available to Jane immediately when she
first begins analyzing the log. It is also likely that some of
this information, like the precise contents of the database or
even the database schema may not even be available to Jane
for reasons of privacy or security. As a result, this type of
log analysis can quickly become a tedious, time-consuming
process [11]. An earlier work of Aligon et al. [12] attempted
to address this problem for OLAP operations by performing
query log analysis and exploration. Within the scope of this
article, we focus on analysis of SQL queries instead of OLAP
queries. In particular, we lay the groundwork for a more
automated approach to SQL query log exploration based on
hierarchical clustering. Given a hierarchical clustering of the
SQL query log, Jane can manually adjust how aggressively
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the log is summarized. She can select an appropriate level of
granularity without a priori needing to specify exactly what
constitutes a similar query.

The primary focus of this article is to study the suitability
of three existing query distance metrics [13], [14], [15] to be
used with hierarchical algorithms for clustering query logs.
All of these metrics operate on the query structure and do
not rely on the availability of underlying data or schema,
thus making them applicable in a wide variety of practical
settings. We evaluate the three metrics on two types of data:
Human-authored and Machine-generated. Thus, using an
appropriate similarity metric, one can cluster the queries to
obtain a meaningful clustering of the query log.

For our evaluation, we use three evaluation data sets:
i) a large set of student authored queries released by IIT
Bombay [16], ii) a smaller set of student queries gathered at
the University at Buffalo, and released as part of this publi-
cation, and iii) SQL logs that capture all activities on 11 An-
droid phones for a period of one month [2]. Student-written
queries are appealing, as queries are already labeled by their
ground-truth clusterings — For each question, the student
is attempting to accomplish one specific stated task. Con-
versely, machine-generated queries on smartphones present
a conceptually easier challenge, as they produce more rigid,
structured queries. The three similarity metrics are eval-
uated on these data sets using three standard clustering
evaluation statistics: Silhouette Coefficient, Beta CV, and
Dunn Index [17].

None of the similarity metrics perform as well as desired,
so we propose and evaluate a pre-processing step to create
more regular, uniform query representations by leveraging
query equivalence rules and data partitioning operations.
These rules are commonly utilized by database manage-
ment systems when parsing and evaluating SQL queries.
This process significantly improves the quality of all three
distance metrics. We also investigate and identify sources of
errors in the clustering process. Experimental results show
that our regularization pre-processing technique consistently
improves clustering for different query comparison schemes
from the literature.

Concretely, the specific contributions of this article are:
(1) A survey of existing SQL query similarity metrics, (2) An
evaluation of these metrics on multiple query logs, and
(3) Applying query standardization techniques to improve
query clustering accuracy.

This article is organized as follows. We start by perform-
ing a literature survey on log clustering and SQL query
similarity in Section 2. We describe a feature engineering
technique called regularization in Section 3. In Section 4,
we explain our query workloads and propose a strategy
for evaluating the quality of query similarity metrics. The
evaluation is presented in Section 5. We discuss our ex-
periment results, findings and ideas to further build upon
the surveyed techniques in Section 6, and in Section 7,
we explain how this work can be beneficial by giving real
life examples. Finally, we conclude by identifying the steps
needed to deploy query log clustering into practice using
the techniques evaluated in this article in Section 8.

2 BACKGROUND

Analyzing query logs mostly relies on the structure of
queries [18], although their motivations are different; some
methods prefer using the log as a resource to collect in-
formation to build user profiles, and the others utilize
structural similarity to perform tasks like query recommen-
dation [6], [7], [10], performance optimization [13], session
identification [14] and workload analysis [15]. A summary
of these methods is given in Table 1.

There are also other possible approaches; like data-
centric query comparison [19], and utilizing the access areas
of user queries by inspecting the data partition the query
is interested in [20] from the WHERE condition. However,
these approaches are out of our scope since we are interested
in comparing and improving methods based on structural
similarity; we assume that we do not have access to the data
or the statistical information about the database.

Agrawal et al. [21] aim to rank the tuples returned by
the SQL query based on the context. They create a ruleset
for contexts and evaluate the result of queries that belongs
to the context according to the ruleset. They capture context
and query as feature vectors and capture similarity through
cosine distance between the vectors.

Chatzopoulou et al. [10] aim to assist non-expert users
of scientific databases by tracking their querying behavior
and generating personalized query recommendations. They
deconstruct an SQL query into a bag of fragments. Each
distinct fragment is a feature, with a weight assigned to
it indicating its importance. Each feature has two types of
importance: (1) within the query and (2) for the overall
workload. Similarity is defined upon common vector-based
measures such as cosine similarity. A summarization/user
profile for this approach is just a sum over all single query
feature vectors that belong to their workload.

Yang et al. [7], on the other hand, build a graph following
the query log by connecting associations of table attributes
from the input and output of queries which are then used to
compute the likelihood of an attribute appearing in a query
with a similarity function like Jaccard coefficient. Their aim
is again to assist users in writing SQL queries by analyzing
query logs. Giacometti et al. [6], similarly, aim to make
recommendations on the discoveries made in the previous
sessions for users to spend less time on investigating similar
information. They introduce difference pairs in order to mea-
sure the relevance of the previous discoveries. Difference
pairs are essentially the result columns that is not included
in the other return results; hence the method depends on
having access to the data. Stefanidis et al. [8] takes a different
approach, and instead of recommending candidate queries,
they recommend tuples that may be of interest to the user.
By doing so, the users may decide to change the selection
criteria of their queries in order to include these results.

Sapia [5] creates a model that learns query templates to
prefetch data in OLAP systems based on the user’s past ac-
tivity. SnipSuggest [9], on the other hand, is a context-aware
SQL-autocomplete system that helps database users to write
SQL queries by suggesting SQL snippets. In particular, it
assigns a probability score to each subtree of a query based
on the subtree’s frequency in a query log. These probabilities
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Paper title Motivation Features Feature
Structure Distance Function Similarity

Ratio

Agrawal et al. (2006) [21] Q. reply importance Schema, rules Vector Cosine similarity No
Giacometti et al. (2009) [6] Q. recommendation Difference pairs Set Difference query No

Yang et al. (2009) [7] Q. recommendation Selection/join, projection Graph Jaccard coefficient
on the graph edges

No

Stefanidis et al. (2009) [8] Data Recommendation Inner product of two queries Vector - No
Khoussainova et al. (2010) [9] Q. recommendation Popularity of each query object Graph - No

Chatzopoulou et al. (2011) [10] Q. recommendation Syntactic element frequency Vector Jaccard coefficient
and cosine similarity

No

Aouiche et al. (2006) [13] View selection Selection/join, group-by Vector Hamming distance Yes

Aligon et al. (2014) [14] Session similarity Selection/join, projection,
group-by 3 Sets Jaccard coefficient Yes

Makiyama et al. (2016) [15] Workload analysis
Term frequency of projection,
selection/join, from, group-by

and order-by
Vector Cosine similarity Yes

TABLE 1: SQL query similarity literature review

are used to discover the most likely subtree that a user is
attempting to construct, at interactive speeds.

Although these methods [6], [7], [8], [9], [10], [21] utilize
query similarity one way or other to achieve their purpose,
they don’t directly offer a way to compare query similarity.
We aim to summarize the log and the most practical way
to describe a query log is to group similar queries together
so that we can provide summaries of these groups to the
users. For this purpose, we need to be able to measure
pairwise similarity between each query, hence we need a
metric that can do so. As shown in Table 1, this condition is
only satisfied by [13], [14], [15].

Aouiche et al. [13] is the first work we encountered that
proposes a pairwise similarity metric between two SQL
queries although it is not the aim of their work. They aim to
optimize view selection in warehouses by the queries posed
to the system. They consider the selection, joins and group-
by items in the query to create vectors and use Hamming
Distance to measure how similar two queries are. While
creating the vector, it doesn’t matter if an item appears more
than once or where the item is. They cluster similar queries
that creates a workload on the system and base their view
creation strategy in the system on the clustering result.

Aligon et al. [14] study various approaches to defining a
similarity function to compare OLAP sessions. They focus
on comparing session similarity while also performing a
survey on query similarity metrics. They identify selection
and join items as the most relevant components in a query
followed by the group by set. Inspired by the findings, they
propose their own query similarity metric which considers
projection, group-by, selection-join items for queries issued on
OLAP datacubes. OLAP datacubes are multidimensional
models, and they have hierarchy levels for the same at-
tributes. Aligon et al. [14] measure the distance between the
attributes on different hierarchy levels, and compute the set
similarity for projection, group-by, and selection-join sets indi-
vidually when comparing two queries. In our experiments,
since we do not consider the hierarchy levels in an OLAP
system but focus on databases, we consider all queries are
on the same level in the schema to adjust the formulas
presented in the paper. Namely, we compute set similarity
of projection, group-by, selection-join sets of two queries with
Jaccard coefficient. Also, Aligon et al. [14] provide the flex-
ibility to adjust weights of the three feature sets based on

Paper title Extracted Feature Vector

Aouiche et al.
(2006) [13] {‘u.id’, ‘a.userid’, ‘a.balance’, ‘u.yearenrolled’}

Aligon et al.
(2014) [14]

{‘u.username‘, ‘u.yearenrolled’}
{‘u.id’, ‘a.userid’, ‘a.balance’}
{‘u.yearenrolled’}

Makiyama et al.
(2016) [15]

{‘SELECT u.username’→1,
‘SELECT u.yearenrolled’→1,
‘FROM user→1’, ‘FROM accounts’→1,
‘WHERE u.id’→2, ‘WHERE a.userid’→1,
‘WHERE a.balance’→1,
‘GROUPBY u.yearenrolled’→1,
‘ORDERBY u.yearenrolled’→1}

TABLE 2: Representation of three similarity metrics

the domain needs. We explore how the clustering quality is
affected with various weightings in Appendix A.

Makiyama et al. [15] approach query log analysis with
the goal of analyzing a system’s workload, and they provide
a set of experiments on Sloan Digital Sky Survey (SDSS)
dataset. They extract the terms in selection, joins, projection,
from, group-by and order-by items separately and record their
appearance frequency. They create a feature vector using
the frequency of these terms which they use to calculate the
pairwise similarity of queries with cosine similarity. Instead
of clustering, they perform the workload analysis with Self-
Organizing Maps (SOM).

To further illustrate how the three structural metrics [13],
[14], [15] work, we show the feature representations for the
following query for each method in Table 2.
SELECT u.username, u.yearenrolled
FROM user u, accounts a
WHERE u.id = a.userid

AND a.balance > 1000
AND u.id > 20050001

GROUP BY u.yearenrolled
ORDER BY u.yearenrolled

In the next section, we propose a generalized feature en-
gineering scheme for query comparison methods to improve
the clustering quality. Our work evaluates the performance
of the three methods [13], [14], [15] that directly describe
a pairwise similarity metric in Section 4 due to the lack of
performance evaluation for the query similarity metrics in
the given studies. We also show that our feature engineering
scheme improves the clustering quality with both statistical
and empirical methods.
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3 FEATURE ENGINEERING

The grammar of SQL is declarative. By design, users can
write queries in the way they feel most comfortable, letting
well-established equivalence rules dictate a final evaluation
strategy. As a result, many syntactically distinct queries may
still be semantically equivalent. Recall example queries 1
and 3, paraphrased here:

1) SELECT name FROM user
WHERE rank = ’a’ OR rank=’s’

3) SELECT name FROM user WHERE rank = ’a’
UNION SELECT name FROM user WHERE rank = ’s’

Though semantically distinct, these queries produce
identical results for any input. Unfortunately similarity of
results is not practical to implement: General query equiv-
alence is NP-complete [22] for SQL92 and earlier, while
SQL99 and later versions of SQL are turing-complete, due
to the introduction of recursive queries.

However, we can still significantly improve clustering
quality by standardizing certain SQL features into a more
regular form with techniques such as canonicalizing names
and aliases, removing syntactic sugaring, and standardizing
nested query predicates. This process of regularization aims
to produce a new query that is more likely to be structurally
similar to other semantically similar queries. Because the out-
put is an ordinary SQL query, regularization may be used
with any similarity metric. These process is similarly used
in [23], [24], where Chandra et al. [23] generate mutations of
SQL queries to catch diversions from a baseline query, and
Sapia [24] creates OLAP query prototypes based on selected
features and models user profiles.

Although the techniques we utilize for regularization are
widely used in other settings, to the best of our knowledge,
we introduce their usage to improve clustering quality. We
also test all the techniques we use individually to find their
impact on the regularization’s overall effect. Our experi-
ments in Section 5.2 show consistent improvements for all
metrics evaluated in practical real world settings. In this
section, we describe the transformations that we apply to
regularize queries and the conditions under which they may
be applied.

3.1 Regularization Rules
Canonicalize Names and Aliases. As we will show in
our experiments in Section 5, table and attribute aliases
are a significant source of error in matching. Consider the
following two queries:

5) SELECT name FROM user
6) SELECT id

FROM (SELECT name AS id FROM user) AS t

Although these queries are functionally identical, vari-
able names are aliased in different ways. This is especially
damaging for the three structural heuristics that we eval-
uate, each of which assumes that variable names follow
a globally consistent pattern. Our first regularization step
attempts to create a canonical naming scheme for both
attributes and tables which is similar to one used in [23].
Syntax Desugaring. We remove SQL’s redundant syntactic
sugar following basic pattern-replacements as shown in
Table 3.
EXISTS Standardization. Although SQL admits four
classes of nested query predicates: (EXISTS, IN, ANY, and

Before After
b {>,≥} a a {<,≤} b

x BETWEEN (a,b) a ≤ x AND x ≤ b
x IN (a,b,. . . ) x=a OR x=b OR . . .

isnull(x,y) CASE WHEN x is null THEN y END

TABLE 3: Syntactic Desugaring

ALL), the EXISTS predicate is general enough to capture the
semantics of the remaining operators [23]. Queries using the
others are rewritten:
x IN (SELECT y ...) becomes

EXISTS (SELECT * ...WHERE x = y)
x < ANY (SELECT y ...) becomes

EXISTS (SELECT * ...WHERE x < y)
x < ALL (SELECT y ...) becomes

NOT EXISTS (SELECT * ...WHERE x ≥ y)
DNF Normalization. We normalize all boolean-valued
expressions by converting them to disjunctive normal form
(DNF). The choice of DNF is motivated by the ubiquity of
conjunctive queries in most database applications, as well
as by the natural correspondence between disjunctions and
unions that we exploit below.
Commutative Operator Ordering. We standardize the or-
der of expressions involving commutative and associative
operators (e.g., ∧, ∨, +, and×) by defining a canonical order
of all operands and traversing the expression tree bottom-up
to ensure consistent order of all operands.
Flatten FROM-Nesting. We merge nested sub-queries in a
FROM clause with its parent query as described in [23].
Nested Query De-correlation. A common database op-
timization called nested-query de-correlation [25] converts
some EXISTS predicates into joins for more efficient eval-
uation. Note that this rewrite does not guarantee query
result equivalence under bag semantics due to duplicated
rows in the result. Hence we require that the parent query
is either a SELECT DISTINCT or a duplicate-insensitive
aggregate [26] (e.g. max{1, 1} = max{1}, but sum{1, 1} 6=
sum{1}). If the EXISTS predicate is in a purely conjunctive
WHERE clause, the de-correlation process simply moves the
query nested in the EXISTS into the FROM clause of its par-
ent query. The (formerly) nested query’s WHERE clause can
be then merged into the parent’s WHERE clause. Specifically,
if the input query is of the form:
SELECT ... FROM R WHERE

EXISTS (SELECT ... FROM S WHERE q)

then the output query will have the form:
SELECT ... FROM R, (SELECT ... FROM S) WHERE q

To de-correlate a NOT EXISTS predicate, we use the set-
difference operator EXCEPT. If the input is of the form:
SELECT DISTINCT... FROM R WHERE

NOT EXISTS (SELECT ... FROM S WHERE q)

then the output will be of the form
(SELECT DISTINCT... FROM R) EXCEPT

(SELECT DISTINCT... FROM R, WHERE
EXISTS (SELECT ... FROM S WHERE q))

OR-UNION Transform. We use a regularization
transformation that exploits the relationship between
OR and UNION. This rewrite does not guarantee query
result equivalence, also due to potentially duplicated rows
in query result. Recall the equivalence between logical
OR and UNION mentioned in our first example. Naively,
we might convert the DNF-form predicates into UNION
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queries:
SELECT . . . WHERE q OR p OR . . . becomes

SELECT . . . WHERE q UNION SELECT . . . WHERE p
UNION . . .
However, duplicates caused by the possible correlation
between clauses in DNF will break the equivalence of this
rewrite. Consider the following query:
SELECT Score FROM Exam WHERE Score>60 OR Pass=1

Students who pass the exam overlap with those whose
score greater than 60. Thus the rewritten query would not
be exactly equivalent, as it may include duplicate rows. As
a result, we require the query to satisfy the same condition
mentioned in previous rule nested query de-correlation.
Union Pull-Out. Since the prior transformation may in-
troduce UNION operator in nested subqueries, we push
selection predicates down into the union as well.

4 QUALITY METRICS

In this section, we introduce the quality measures and work-
loads to evaluate three query similarity metrics and the fea-
ture engineering scheme. Our goal is to evaluate how well
a query similarity metric captures the task behind a query
with and without regularization. We use two types of real-
world query workloads: human- and machine-generated.
We expect the problem of query similarity to be harder
on human-generated workloads, as queries generated by
machines are more likely to follow a strict, rigid structural
pattern.

As a source of human-generated queries, we use two
different sets of student answers to database course as-
signments. Many database courses include homework or
exam questions where students are asked to translate prose
into a precise SQL query. This provides us with a ground-
truth source of queries with different structures that should
be similar. As machine-generated queries, we use Pocket-
Data [2] a log of 33 million queries issued by smartphone
apps running on 11 phones in the wild over the course of a
month.

In subsection 4.1, we outline the datasets used. Then, in
subsection 4.2, we outline the experimental methodology
used to evaluate distance metrics, and propose a set of
measures for quantitatively assessing how effective a query
similarity metric is at clustering queries with similar tasks.

4.1 Workloads
We use three specific query sets: Student assignments gath-
ered by IIT Bombay [16], student exams gathered at our
department (denoted as UB dataset in the experiments) and
released as part of this article1, and SQL query logs of the
Google+ app extracted from PocketData dataset [2].

The first dataset [16] consists of student answers to SQL
questions given in IIT Bombay’s undergraduate databases
course. The dataset consists of student answers to 14 sepa-
rate query-writing tasks, given as part of 3 separate home-
work assignments. The query writing tasks have varying
degrees of difficulty. Answers are not linked to anonymous
student identifiers and there is no grade information. The
IIT Bombay dataset is exclusively answers to homework

1. http://odin.cse.buffalo.edu/public data/
2016-UB-Exam-Queries.zip

assignments, so we expect generally high-quality answers
due to the lack of time pressure and availability of resources
for validating query correctness.

The second dataset consists of student answers to SQL
questions given as part of our department’s graduate
database course. The dataset consists of student answers to 2
separate query-writing tasks, each given as part of midterm
exams in 2014 and 2015 respectively. SQL queries were
transcribed from hand-written exam answers, anonymized
for IRB compliance and labeled with the grade the answer
was given. We expect quality to vary, as exams are closed-
book and students have limited time. Since 50% of the grade
is the failing criterion, we assume that answers conform
with the task of the question if the grade is over 50%. We
also explore 20% and 80% thresholds in Appendix B.

The third dataset consists of SQL logs that capture all
database activities of 11 Android phones for a period of
one month. We selected Google+ application for our study
since it is one of the few applications where all users created
a workload. SQL queries collected were anonymized and
some of the identified query constraints were deleted for
IRB compliance [2].

A summary of all datasets is given in Tables 4, 5, and 6.
The prose questions asked for IIT Bombay and UB Exam
datatsets can be found in Table 7 and 8. Not all student
responses are legitimate SQL, and so we ignore queries
that cannot be successfully parsed by our open-source SQL
parser2. We also released the source code we used in the
experiments3.

In the first two datasets, the query-writing task is spe-
cific. We can expect that student answers to a single question
are written with the same task. Thus, we would expect a
good distance metric to rate answers to the same question as
close and answers to different questions as distant. Similarly,
using the distance metric for clustering, we would expect to
see each query cluster to uniformly include answers to the
same question.

In the third dataset, PocketData-Google+, the queries
are generated by the Google+ application. Since some of
the constants are replaced with standard placeholders for
IRB compliance, the number of distinct queries drops sig-
nificantly. Since there is no information about what kind
of a task a query is trying to perform, we inspected and
manually labeled each distinct query string. Queries were
labeled with one of 8 different categories: Account, Activity,
Analytics, Contacts, Feed, Housekeeping, Media and Photo.

4.2 Clustering validation measures
In addition to workload datasets, we define a set of mea-
sures to be used for evaluating queries. Given a set of
queries labeled with tasks and an inter-query similarity
metric, we want to understand how well the metric can (1)
put queries that perform the same task close together even
if they are written differently, and (2) differentiate queries
that are labeled with different tasks.

We evaluate each metric according to how well it aligns
with the ground-truth cluster labels. Rather than evaluating
the clustering output itself, we evaluate an intermediate

2. https://github.com/UBOdin/jsqlparser
3. https://github.com/UBOdin/EttuBench

http://odin.cse.buffalo.edu/public_data/2016-UB-Exam-Queries.zip
http://odin.cse.buffalo.edu/public_data/2016-UB-Exam-Queries.zip
https://github.com/UBOdin/jsqlparser
https://github.com/UBOdin/EttuBench
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Question Total number Number of Number of distinct
of queries parsable queries query strings

1 55 54 4
2 57 57 10
3 71 71 66
4 78 78 51
5 72 72 67
6 61 61 11
7 77 66 61
8 79 73 64
9 80 77 70
10 74 74 52
11 69 69 31
12 70 60 22
13 72 70 68
14 67 52 52

TABLE 4: Summary of IIT Bombay dataset

Year 2014 2015

Total number of queries 117 60
Number of syntactically correct queries 110 51

Number of distinct query strings 110 51
Number of queries with score > 50% 62 40

TABLE 5: Summary of UB Exam dataset

step: the pairwise distance matrix for the set of queries in
a given workload. With this matrix and a labeled dataset,
we can use various clustering validation measures to un-
derstand how effectively a similarity metric characterizes
the partition of a set of queries. Specifically, clustering
validation measures are used to validate the quality of a
labeled dataset by estimating two quantities: (1) the degree
of tightness of observations in the same label group and (2)
the degree of separations between observations in different
label groups. As a result, we will use three clustering valida-
tion measures [17, Chapter 17] including Average Silhouette
Coefficient, BetaCV and Dunn Index as they all quantify the
two qualities mentioned above in their formulations.
Silhouette coefficient. For every data point in the dataset,
its silhouette coefficent is a measure of how similar it is to
its own cluster in comparison to other clusters. In particular,
the silhouette coefficient for a data point i is measured as

b(i)−a(i)
max(a(i),b(i)) where a(i) is the average distance from i to all
other data points in the same cluster and b(i) is the average
distance from i to all other data points in the closest neigh-
boring cluster. The range of silhouette coefficient is from −1
to 1. We denote s(i) to represent silhouette coefficient of
data point i. s(i) is close to 1 when s(i) is close to other
data points from the same cluster more than data points
from different clusters, which represents a good match. On
the other hand, s(i) which is close to −1 represents that the
data point i stayed in the wrong cluster, as it is closer to data
points in different clusters than its own. Since the silhouette
coefficient represents a measure of degree of goodness for

Pocket Dataset Google+

All queries 45,090,798 2,340,625
SELECT queries 33,470,310 1,352,202

Distinct query strings 34,977 135

TABLE 6: Summary of PocketData dataset and Google+

ID Question

1 Find course id and title of all the courses

2 Find course id and title of all the courses offered by
“Comp. Sci.” department.

3 Find course id, title and instructor ID for all the courses
offered in Spring 2010

4 Find id and name of all the students who have taken the
course “CS-101”

5 Find which all departments are offering courses in Spring
2010

6 Find the course ID and titles of all courses that have more
than 3 credits

7
Find, for each course, the number of distinct students who
have taken the course; in case the course has not been taken
by any student, the value should be 0

8 Find id and title of all the courses offered in Spring 2010,
which have no pre-requisite

9 Find the ID and names of all students who have (in any
year/semester) taken two courses

10 Find the departments (without duplicates) of courses that
have the maximum credits

11

Show a list of all instructors (ID and name) along with
the course id of courses they have taught. If they have not
taught any course show the ID and name with null value
for course id

12
Find IDs and names all students whose name contains
the substring “sr” ignoring case. (Hint Oracle supports the
functions lower and upper)

13

Using a combination of outer join and the is null predicate
but WITHOUT USING ”except/minus” and ”not in” find
IDs and names of all students who have not enrolled in any
course in Spring 2010

14

A course is included in your CPI calculation if you passed
it, or you have failed it, and have not subsequently passed
it (or in other words, a failed course is removed from CPI
calculation if you have subsequently passed it). Write an
SQL query that shows all tuples of the relation other than
those eliminated by the above rule, and also eliminating
tuples with a null value for grade

TABLE 7: Questions given IIT Bombay Dataset [16]

Year Question

2014
How many distinct species of bird have ever been seen
by the observer who saw the most birds on December 15,
2013?

2015

You are hired by a local birdwatching organization,
who’s database uses the Birdwatcher Schema on page
2. You are asked to design a leader board for each species
of Bird. The leader board ranks Observers by the number
of Sightings for Birds of the given species. Write a query
that computes the set of names of all Observers who are
highest ranked on at least one leader board. Assume that
there is no tied rankings.

TABLE 8: UB Exam dataset questions

each data point, to validate the effectiveness of the distance
metric given a query partition, we use the average silhouette
coefficient of all data points (all queries) in the dataset.
BetaCV measure. The BetaCV measure is the ratio of the
total mean of intra-cluster distance to the total mean of inter-
cluster distance. The smaller the value of BetaCV, the better
the similarity metric characterizes the cluster partition of
queries on average.
Dunn Index. The Dunn Index is defined as the ratio
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between minimum distance between query pairs from dif-
ferent clusters and the maximum distance between query
pairs from the same cluster. In other words, this is the ratio
between closest pairs of points from different clusters over
the largest diameter among all clusters. Higher values of
the Dunn Index indicate better the worst-case performance
of the clustering metric.

5 EXPERIMENTS

In this section, we perform experiments to evaluate the per-
formance of three similarity metrics previously discussed
in Section 2: Makiyama’s similarity [15], Aligon’s similar-
ity [14] and Aouiche’s similarity [13]. We implemented each
of these similarity metrics in Java and evaluated them using
the three clustering validation measures discussed in sub-
section 4.2. In particular, we evaluate these three similarity
metrics on their ability to capture the tasks performed by
SQL queries. In addition, we also evaluate the effectiveness
of the feature engineering step introduced in Section 3 and
understand how query similarity can be improved by apply-
ing this step on the SQL query. We also look closer at feature
engineering by breaking it down to different modules and
analyze the effect of each module on capturing the tasks
performed by queries.

5.1 Evaluation on SQL similarity metrics

In the first experiment, we evaluate three similarity metrics
mentioned in Section 2. The aim of the experiment is to
evaluate which similarity metric can best capture the task
performed by each query.

The black columns in Figure 1 show a comparison of
three similarity metrics using each of the three quality
measures (Average Silhouette Coefficient, BetaCV and Dunn
Index). As can be seen in Figure 1, Aligon seems to work
the best for both IIT Bombay and UB Exam dataset while
achieving second-best for PocketData-Google+ dataset un-
der the Average Silhouette Coefficient measure. When con-
sidering BetaCV measure, Aligon also attains the best result
for both IIT Bombay and UB Exam dataset while having
comparable result for PocketData-Google+ dataset. Aligon
also performs well on the Dunn Index, coming in first on
UB Exam dataset, and second-best for IIT Bombay and
PocketData-Google+ dataset. Especially given that the Dunn
Index measures only worst-case performance, Aligon’s met-
ric seems to be ideal for our workloads. This shows that
even a fairly simple approach can capture task similarity
well.

For a closer look of Aligon’s similarity metric, Fig-
ure 2(a,c,e) shows the distribution of Silhouette coefficients
for each query and their respective tasks. Recall that the
silhouette coefficient below 0 effectively indicates a query
closer to another cluster than its own, or a query that would
be mis-classified. The further below zero, the greater the
error. For the UB Exam dataset (Figure 2c), the majority of
queries would have been successfully classified, and only
a small fraction exhibit minor errors. For the PocketData-
Google+ dataset (Figure 2e), there are some erroneous
queries in cluster 4, 5 and 6 while cluster 1, 2, 3, 7 and 8
have very few errors. For the Bombay dataset (Figure 2a),

the distribution of errors varies. Cluster 1, 2, 4, 6, 12 and 14
exhibit virtually no error, while cluster 7, 8, and 9 exhibit
particularly egregious errors.

5.2 Evaluation of feature engineering

We next evaluate the effectiveness of regularization by
applying it to each of the three metrics described in Sec-
tion 2. We use our quality evaluation scheme to compare
the quality of each measure both with and without feature
engineering.

Figure 1 shows the values of three validation measures
for each of the three similarity metrics, both with and
without regularization. As shown in Figure 1, regularization
significantly improves the Average Silhouette Coefficient
and BetaCV measures for all similarity metrics except for
the case of Makiyama similarity metric with PocketData-
Google+ dataset. The Dunn index is relatively unchanged
or little improved for the IIT Bombay and PocketData-
Google+ dataset and shows slight signs of worsening with
regularization on the UB Exam dataset. To understand the
reason of worse Dunn Index, we compare Figure 2c (orig-
inal) with Figure 2d (with regularization). The Silhouette
Coefficient for answers that are originally positive in each
question are considerably increased, and for answers that
are originally negative (regarded erroneous) are even more
decreased as a result of regularization, since it reduces the
query structure diversity which leads to separating queries
better. In other words, for erroneous answers with neg-
ative Silhouette Coefficients, distance metrics like Aligon
distinguish them further apart from answers with positive
Silhouette Coefficients after regularization. Since erroneous
answers are treated as the ‘worst cases’ for each question,
the Dunn Index which measures worst case performance
naturally gets worse.

5.2.1 Per-Query Similarity
Figure 2(b,d,f) shows the distributions of silhouette coeffi-
cients for the Aligon similarity metric after regularization
is applied. For IIT Bombay dataset, comparing against Fig-
ure 2a there is a slight improvement at the tail end of clusters
9, 11, 12, 13 and 14 — several of the negative coefficients
have been removed. Furthermore, positive matches have
been improved, particularly for cluster 7, 9, 10, 12 and 13.
Finally, there has been a significant reduction in the degree
of error in cluster 10. Cluster 10 is a particularly egregious
case of aliasing, as the correct answer involves two self-joins
in the same query. As a result, aliasing is a fundamental
part of the correct query answer, and our rewrites could
not reliably create a uniform set of alias names. In the UB
Exam and PocketData-Google+ datasets, the improvement
provided by regularization can be seen for queries with both
positive and with negative values of s(i).

5.3 Case Study

As part of our analysis, we attempted to provide empirical
explanations for query errors, in particular for queries where
s(i) < 0 for all three similarity metrics. Namely, we looked
into the queries that are too far apart from the clusters they
belong, and we categorized the reasons for misclassification
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Fig. 1: Clustering validation measures for each metric with and without regularization step

based on these queries. We then investigated how the regu-
larization process particularly affect these queries.

Almost all of these egregiously misclassified queries
appear in the IIT Bombay dataset, the distribution of which
is summarized in Table 9. The PocketData-Google+ dataset
includes no egregiously misclassified queries, while the UB
Exam dataset includes only one such query (which we
tagged as a case of Contextual equivalence). We tagged
each egregiously misclassified query with an explanation
that justifies why the query has a low s(i). Tags were drawn
from the following list:
Ground-truth error. A student’s response to the question
may have been legitimately incorrect. This is a query that is
correctly classified as an outlier. For example:

SELECT *
FROM (SELECT id, name, time_slot_id
FROM (SELECT *
FROM (SELECT *
FROM student
NATURAL JOIN takes) b1) a, section
WHERE a.course_id = section.course_id) a1

This query was attempting to complete the task “Find
the ID and names of all students who have (in any year/semester)
taken two courses in the same timeslot.”
Nested subquery. A student’s response is equivalent to
a legitimately correct answer but uses nested subqueries
such that a heuristic distance metric cannot recognize. For
example:

SELECT id, name FROM student
WHERE id IN (SELECT DISTINCT s.id

FROM (SELECT * FROM takes NATURAL JOIN section) s,
(SELECT * FROM takes NATURAL JOIN section) t
WHERE s.id = t.id
AND s.time_slot_id = t.time_slot_id
AND s.course_id <> t.course_id)

Here, the subquery nesting structure is significantly dif-
ferent from other queries for of the same question.
Aliasing. Aliasing (e.g., AS in SQL) breaks a distance metric
that relies on attribute and relation names. For example:
SELECT DISTINCT student.id, student.name
FROM student, takes, section AS a, section AS b
WHERE student.id = takes.id

AND takes.course_id = a.course_id
AND takes.course_id = b.course_id
AND a.course_id <> b.course_id
AND a.time_slot_id = b.time_slot_id

The student’s use of a and b make this query hard to
distinguish from other queries that may use other names
for the attributes.
Insufficient features. Relevant query components are not
sufficiently captured as features for a heuristic distance met-
ric to distinguish between answers from sufficiently similar
questions.
Too many features. Irrelevant query components create
redundant features that artificially increase the distance
between the query and cluster center. For example:
SELECT DISTINCT student.name, takes.id,

s1.course_id, s2.course_id
FROM section AS s1, section AS s2, takes, student
WHERE takes.course_id = s1.course_id

AND s1.course_id <> s2.course_id
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Fig. 2: Distribution of silhouette coefficients when using Aligon’s similarity without regularization (a,c,e), and when
regularization is applied (b,d,f)

AND s1.time_slot_id = s2.time_slot_id
AND s1.semester = s2.semester
AND s1.year = s2.year
AND takes.sec_id = s1.sec_id
AND s1.semester = takes.semester
AND s1.year = takes.year
AND student.id = takes.id
AND s2.time_slot_id = s2.time_slot_id
AND takes.sec_id = s2.sec_id
AND s2.semester = takes.semester
AND s2.year = takes.year

Contextual equivalence. Establishing query equivalence to
properly clustered queries requires domain-specific knowl-
edge not available to the distance metric (e.g. attribute
uniqueness). For example:

SELECT student.id, student.name
FROM student

WHERE student.id
IN (SELECT takes.id

FROM takes, section
WHERE takes.course_id = section.course_id

AND takes.sec_id = section.sec_id
AND takes.semester = section.semester
AND takes.year = section.year

GROUP BY takes.id,
takes.semester,
takes.year,
section.time_slot_id

HAVING count(*) > 1)

Table 9 shows the primary reasons why these queries
could not be classified correctly. Note that there may be
more than one reason for a query to be placed in a dif-
ferent cluster, but in Table 9, we only give the empirically
determined primary reason.
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Cause

Erroneous
queries
Without

Regularization

Erroneous
queries

With
Regularization

All queries 33 (100%) 27 (100%)
Ground-truth quality 14 (42.4%) 14 (51.8%)

Nested subquery 7 (21.2%) 5 (18.5%)
Aliasing 8 (24.2%) 5 (18.5%)

Insufficient features 2 (6.0%) 1 (3.7%)
Too many features 1 (3.0%) 1 (3.7%)

Contextual equivalence 1 (3.0%) 1 (3.7%)

TABLE 9: Empirical error reasons for IITBombay Dataset

Many of the queries with low silhouette coefficients are
identified as incorrect answers for the task given. These
answers directly affect the ground-truth quality, therefore
reduce the average silhouette coefficient. Another reason for
erroneous queries with low silhouette coefficients is because
of aliasing. Although it is convenient for user to use aliases
in the query to refer to a particular item, it is difficult for
a machine to approximate the tasks the query authors are
trying to accomplish since different query authors have
different ways to name particular items in the query. This
problem is particularly prevalent in question 9 of the IIT
Bombay dataset.

Although the distribution of the error reasons are ex-
pected to change, all the tags provided in this section can
generically be applied to other query logs given a ground-
truth. The regularization method cannot be expected to fix
errors originating from misclassifications in ground-truth
since they do not actually share any similarities with the
cluster.

After the regularization process, the silhouette coefficient
under all three similarity metrics for each query is computed
again and the result yields an 18% overall reduction in
number of erroneous queries (s(i) < 0) in the IIT Bombay
dataset.

5.4 Analysis of regularization by module
In Subsection 5.2, we analyzed the overall effect of reg-
ularization on query similarity. However, as described in
Section 3, regularization is composed of many different
transformation rules. In this experiment, we group these
rules into four separate modules and inspect their impact
on the clustering quality. One may observe that Commuta-
tive Operator Ordering is guaranteed to provide benefit in
structure similarity comparison, hence we include it in all
four modules. In addition, there are dependencies between
rules that require them to operate one before another. For
example, we should better apply Syntax Desugaring and
then DNF Normalization to simplify the boolean expression
in WHERE clause before OR-Union Transformation. As
another example, Exists Standardization should better be
applied on nested sub-queries before we de-correlate them
using Nested Query De-correlation. As a result, we group
the rules from Section 3 into four modules:

1) Naming: Canonicalize Names and Aliases
2) Expression Standardization: Syntax Desugaring,

Exists Standardization, DNF Normalization,
Nested Query Decorrelation, OR-Union Transform

3) FROM-Nesting: Flatten FROM-Nesting

4) Union Pullout: OR-UNION Pullout
Commutative Operator Ordering is included in all mod-
ules.

Figure 3 provides a comparison of each module in reg-
ularization. From this figure, one can observe that, since
students use different names/aliases for their convenience
when constructing queries, the Naming module is the most
effective one in terms of improving clustering quality for
IIT Bombay and UB Exam datasets. On the other hand, for
PocketData-Google+ dataset, names are already canonical-
ized as they are machine-generated. In this case, Expression
Standardization seems to be the most effective module, es-
pecially when using Aligon or Aouiche as similarity metric.
In PocketData-Google+ dataset, referred tables and boolean
expressions in the queries are both informative in distin-
guishing between different query categories or clusters. For
this reason, Makiyama similarity metric which considers
both works well even without regularization while Aligon
and Aouiche can get commensurate performance only after
applying Expression Standardization module.

Note that in Figure 3, Expression Standardization makes
Average Silhouette Coefficient worse in some cases for IIT
Bombay and UB Exam data sets. The performance degrada-
tion is majorly due to feature duplication. More specifically,
consider the example query with Expression Standardization.
Example 1. Syntax Desugaring with OR-UNION transform

1) SELECT name FROM usr WHERE
rank IN {’admin’,’normal’}

2) SELECT name FROM usr WHERE
rank = ’admin’ OR rank = ’normal’

3) SELECT name FROM usr
WHERE rank = ’admin’
UNION
SELECT name FROM usr
WHERE rank = ’normal’

Query (1) is transformed into (2) by syntax desugaring and
then into (3) by OR-UNION Transform. From (1) to (2),
feature WHERE rank has been replicated; From (2) to (3),
features SELECT name and FROM usr have been dupli-
cated. For expressions of the form: X IN {x1, x2, . . . , xn},
feature duplication becomes dominant when n grows large.
In Figure 3, Aligon and Makiyama suffer from feature du-
plication brought by Expression Standardization in some cases
while Aouiche does not. Because Aouiche records feature
existence instead of occurrence in its vector. Although in
some cases such as this, simply replacing feature occurence
with existence solves the problem of feature duplication,
feature occurence can also be a good indicator for the inter-
ests of the query. We believe this problem can be addressed
with exploration of feature weighting strategies. Therefore,
the problem of feature duplication will be further explored
as a part of feature weighting strategies in our future work.

6 DISCUSSION

We have reviewed several similarity metrics for clustering
queries and focused on three syntax-based methods that
offer an end-to-end similarity metric. The advantage of this
preference is that, syntax-based methods do not require
access to the data in the database or database properties.
Considering that only logs are usually transferred between
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Fig. 3: Effect of each module in regularization

organizations, and requiring access to the data for investi-
gations can cause privacy violations, we preferred focusing
on the syntax-based approach.

The survey we performed shows that most of the metrics
make use of selection and join operations in the queries and
consider them as the most important items for similarity
calculation. Group-by aggregate follows them closely while
projection items take the third most important item set.
There are other possible feature sets that can be used, such as
tables accessed or the abstract syntax tree (AST) of a query,
but these feature sets are generally overlooked.

Although Aouiche et al. [13] make use of the most
important features selection, joins, and group-by items, they
don’t utilize the number of times an item appears, or after
the parsing, they don’t consider what kind of feature an
item is. This means, it does not matter if a query has rank
column in group-by, and the other one has rank column in
selection; they are considered the same. Makiyama et al. [15],
on the other hand, follow Aligon et al. [14] in separating
the different features, and improves on it by making use of
appearance count of items. However, while trying to make
use of every item like FROM and Order-By predicates, they
consider these low priority predicates with same importance
as the selection and join predicates.

Makiyama et al. [15] use a more complete structure of
the query AST, hence when the query is simple like in the
PocketData-Google+ dataset, this technique can be slightly
better. However, for a complex query with redundant fea-
tures, mixing features captured from various components of
a query without proper feature re-weighting will essentially
decrease the weight of features that are more informative.
Hence, in student exam datasets, we can observe that Aligon
et al. [14] is better than the others while in PocketData-
Google+ dataset, Makiyama et al. [15] is better.

We could further improve these methods by making use
of the abstract syntax tree (AST) of a SQL statement. As a
declarative language, the AST of a SQL statement acts as a
proxy for the task of the query author. This suggests that a

comparison of ASTs can be a meaningful metric for query
similarity. For instance, we can group a query Q with other
queries that have nearly (or completely) the same AST as
Q. This structural definition of task has seen substantial use
already, particularly in the translation of natural language
queries into SQL [27]. For two SQL queries Q1 and Q2,
one reasonable measure might be to count the number
of connected subgraphs of Q1 that are isomorphic to a
subgraph of Q2. Subgraph isomorphism is NP-complete,
but a computationally tractable simplification of this metric
can be found in the Weisfeiler-Lehman (WL) Algorithm [3],
[28].

As can be seen in Tables 4 and 5, as the complex-
ity or difficulty of the question increases, the number of
distinct queries also increases, i.e., students find different
ways to solve the same problem. Especially, in Table 5, no
two students answer a question using the same structure.
This phenomenon motivates the need for regularization in
comparing SQL queries. As the complexity of the query
increases, the possible ways to create the query to achieve
the same task increase. Figure 1 shows that our assumption
that regularizing queries will improve overall clustering
quality is correct. Our proposed feature engineering scheme
improves the overall clustering quality of all three metrics
on all three datasets, including both human- and machine-
generated queries.

7 APPLICATION SCENARIOS

In this section, we provide three scenarios where the clus-
tering scheme coupled with the proposed regularization is
applicable:

The first one is, Jane the DBA where she takes on the task
of improving database performance. After performing the
straightforward database indexing tasks, she would need
to select candidate views, which are virtual tables defined
by a query. They allow querying just like tables by pre-
fetching records from existing tables. Constructing a view
for a frequent complex join operation can increase querying
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performance of the database substantially. To find the ideal
views, Jane first clusters similar queries together to see what
kinds of queries are more frequent. Making the most fre-
quent complex query types faster by creating views of them
could improve database performance substantially [13], [14].

The second one is, Jane the security auditor where she
suspects that there is a person who leaks classified infor-
mation from her organization. She can choose to investigate
database access patterns along with other strategies which
would involve query clustering [29]. After identifying the
query clusters, she can partition the queries by the depart-
ment or role to get the intuition about which departments
and roles normally utilize what part of the database. She can
detect the outliers from that behavior in order to determine
the suspects for further investigation.

Lastly, Jane the researcher where needs to investigate the
properties of the SQL query dataset that she is going to
use for her research. One of the new graduate students in
her team clusters the queries, and provides her with the
clustering assignments of each query. She doubts the quality
of the clustering performed, and wonders if the clustering
operation could be performed better.

Having a better clustering of queries would potentially
enhance the quality of her work in all of the examples given
above. Also, works cited in this section [13], [14], [29], along
with many others can benefit from the framework described
in this article.

8 CONCLUSION AND FUTURE WORK

The focus of this work is to understand and improve simi-
larity metrics for SQL queries relying on query structure to
be used to cluster queries. We described a quality evaluation
scheme that captures the notion of query task using student
answers to query-construction problems and a real-world
smartphone query load. We used this scheme to evaluate
three existing query similarity metrics. We also proposed
a feature engineering technique for standardizing query
representations. Through further experiments, we showed
that different workloads have different characteristics and
no one similarity metric surveyed was always good. The
feature engineering steps provided an improvement across
the board because they addressed the error reasons we
identified.

The approaches described in this article only represent
the first steps towards tools for summarizing logs by tasks.
Concretely, we plan to extend our work in several directions:
First, we will explore new feature extracting mechanisms
like the Weisfeiler-Lehman framework [3], feature weighting
strategies and new labeling rules in order to capture the task
behind logged queries better. Second, we will introduce the
temporal order of the log to increase the query clustering
quality. In this article, we focused on query structures to
improve clustering quality. Exploring the inter-query feature
correlation based on query order can be used to summarize
query logs in addition to clustering. Third, we will exam-
ine user interfaces that better present clusters of queries
— Different feature sorting strategies in Frequent Pattern
Trees (FP Trees) [30] in order to help the user distinguish
important and irrelevant features, for example. Lastly, we
will investigate the temporal effects on query clustering.
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APPENDIX A
EFFECT OF WEIGHT IN ALIGON METHOD

As presented in section 2, Aligon’s method [14] can be used
to compute the similarity between SQL queries. However,
Aligon’s method requires user to specify the weights of
different parts of SQL queries that will be used in calculation
of similarity. In this method, a SQL query is divided into
three parts including projection, group-by and selection-join
(see Table 1 and Table 2 for details). In this section, we
explore the effect of choosing different weight for each query
part in Aligon’s method.

Let us denote a tuple (wproj , wselect−join, wgroupby)
as a set of weights for projection, selection-join and
group-by respectively.Totally, we consider seven different
combinations of weights including (0.2, 0.4, 0.4),
(0.25, 0.25, 0.5), (0.25, 0.5, 0.25), (0.33, 0.33, 0.33),
(0.4, 0.2, 0.4), (0.4, 0.4, 0.2) and (0.5, 0.25, 0.25).

Figure 4 presents the effect of different sets of weights
in three datasets (see Section 4.1 for descriptions of these
datasets). In this experiment, we use average Silhouette
coefficient (see Section 4.2 for further details) as a measure of
quality for each combination of weights. In Aligon method,
we have three weights, one for projection, group-by and
selection-join respectively, and the total of weights adding
up to one. For this reason, we only present projection weight
and group-by weight in Figure 4 as selection-join weight can
be computed by from projection and group-by weights.

In Figure 4, the size (area) of the point indicates the value
of average Silhouette coefficient with respect to specific
combination of weights. As can be seen in this figure, the
values of average Silhouette coefficient change very little
when adjusting the weights of projection and group-by.
For this reason, in experiments shown in Section 5, we use
equal weight for each query part, i.e. (0.33, 0.33, 0.33), when
applying Aligon’s method to different datasets.

APPENDIX B
EXAM GRADE THRESHOLD

In this section, we explore different grade cutoff thresholds
in UB Exam Dataset and further investigate whether using
different values of threshold can significantly affect the
experimental result presented in Section 5. Table 10 gives
the summary of number of queries obtained by different
levels of threshold. As we can see in the table, the more
demanding threshold we have, the fewer valid queries we
get from the dataset.

Year 2014 2015

Total number of queries 117 60
Number of queries with score > 20% 110 46
Number of queries with score > 50% 62 40
Number of queries with score > 80% 43 10

TABLE 10: Number of queries in UB Exam dataset when
changing the grading threshold

In Figure 5, we show the distribution of Silhouette coef-
ficients of each individual queries in the UB Exam Dataset
and see how changing thresholds affects the quality of
distance metric. As we can see in this figure, when increas-
ing the grading thresholds, the overall values of Silhoette
coeffients also improve. This observation is consistent across
all three distance metrics including Aligon, Aouiche and
Makiyama. However, as we mentioned earlier, increasing
the grading threshold also means fewer queries for analysis.
In order to balance between the number of queries and
quality of analysis, we choose to use the threshold of 50%
in experiments presented in Section 5.
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Fig. 4: Avergage Silhouette Coefficients with respect to different sets of weights in Aligon method

−0.5

0.0

0.5

S
ilh

ou
et

te
 C

oe
ffi

ci
en

t

cluster
1

2

(a) Aligon method with threshold 20%

−0.5

0.0

0.5

S
ilh

ou
et

te
 C

oe
ffi

ci
en

t

cluster
1

2

(b) Aligon method with threshold 50%

−0.5

0.0

0.5

S
ilh

ou
et

te
 C

oe
ffi

ci
en

t

cluster
1

2

(c) Aligon method with threshold 80%

−0.5

0.0

0.5

S
ilh

ou
et

te
 C

oe
ffi

ci
en

t

cluster
1

2

(d) Aouiche method with threshold 20%

−0.5

0.0

0.5

S
ilh

ou
et

te
 C

oe
ffi

ci
en

t

cluster
1

2

(e) Aouiche method with threshold 50%

−0.5

0.0

0.5

S
ilh

ou
et

te
 C

oe
ffi

ci
en

t

cluster
1

2

(f) Aouiche method with threshold 80%

−0.5

0.0

0.5

S
ilh

ou
et

te
 C

oe
ffi

ci
en

t

cluster
1

2

(g) Makiyama method with threshold
20%

−0.5

0.0

0.5

S
ilh

ou
et

te
 C

oe
ffi

ci
en

t

cluster
1

2

(h) Makiyama method with threshold
50%

−0.5

0.0

0.5

S
ilh

ou
et

te
 C

oe
ffi

ci
en

t

cluster
1

2

(i) Makiyama method with threshold
80%

Fig. 5: Silhouette coefficients for UB Exam Dataset when changing grading threshold in three levels - 0.2 (row 1), 0.5 (row
2), 0.8 (row 3)
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