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Abstract Anomaly detection for symbolic sequence data is a highly impor-
tant area of research and is relevant in many application domains. While sev-
eral techniques have been proposed within different domains, understanding
of their relative strengths and weaknesses is limited. The key factor for this is
that the nature of sequence data varies significantly across domains, and hence
while a technique might perform well in its original domain, its performance
is not guaranteed in a different domain. In this paper, we aim at establish-
ing this understanding for a wide variety of anomaly detection techniques for
symbolic sequences. We present a comparative evaluation of a large number of
anomaly detection techniques on a variety of publicly available as well as arti-
ficially generated data sets. Many of these are existing techniques while some
are slight variants and/or adaptations of traditional anomaly detection tech-
niques to sequence data. The analysis presented in this paper allows relative
comparison of the different anomaly detection techniques and highlights their
strengths and weaknesses. We extend the Reference Based Analysis (RBA)
framework, which was originally proposed to analyze multivariate categori-
cal data, to analyze symbolic sequence data sets. We visualize the symbolic
sequences using the characteristics provided by the RBA framework and use
the visualization to understand various aspects of the sequence data. We then
use the characterization done by RBA to understand the performance of the
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different techniques. Using the RBA framework, we propose two anomaly de-
tection techniques for symbolic sequences, which show consistently superior
performance over the existing techniques across the different data sets. We
also propose a novel artificial data generator that can be used to generate val-
idation data sets to evaluate anomaly detection techniques for sequences. The
generator allows creation of validation data sets with different characteristics
by varying the associated parameters to study the relationship between the
anomaly detection techniques and the different characteristics of the data.

1 Introduction

Data occurs naturally as sequences in a wide variety of applications, such as
system call logs in a computer, biological sequences, operational logs of an
aircrafts’ flight, etc. In several such domains, anomaly detection is required
to detect events of interests as anomalies. There has been extensive research
done on anomaly detection techniques [1–3], but most of these techniques
assign an anomaly score to individual data instances with respect to the the
normal data instances, without accounting for the sequence aspect of the data.
For example, consider the set of user command sequences shown in Table 1.
Clearly the sequence S5 is anomalous, corresponding to a hacker breaking into
a computer after multiple failed attempts, even though each command in the
sequence by itself is normal.

S1 login, pwd,mail, ssh, . . . ,mail, web, logout
S2 login, pwd,mail, web, . . . , web, web, web, logout
S3 login, pwd,mail, ssh, . . . ,mail, web, web, logout
S4 login, pwd,web,mail, ssh, . . . , web,mail, logout
S5 login,pwd, login,pwd, login,pwd, . . . , logout

Table 1 Sequences of User Commands

A large number of anomaly detection techniques for symbolic sequences
have been proposed as shown in Table 2. The techniques can be classified
into three broad categories based on the underlying approach. Kernel based
techniques assign an anomaly score to a test sequence based on its similarity
to the normal sequences. Window based techniques calculate the probability
of occurrence of every fixed length window in the test sequence. Markovian
techniques calculate the probability of occurrence of each symbol in the test
sequence conditioned on the preceding few symbols in the test sequence. As
Table 2 shows, these techniques have been developed in the context of differ-
ent domains. For example, Sun et al [4] proposed a probabilistic suffix trees
(PST) based technique to detect anomalous sequences in a data base of pro-
tein sequences. Forrest et al proposed several techniques to detect anomalous
sequences in a data base of operating system call sequences [5–7]. While the
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techniques were proposed and evaluated in specific domains, no systematic
evaluation is available regarding their relative performance. In particular, it is
unclear if the techniques are the best ones for the domain they were proposed
for or if another technique (originally proposed for an entire different domain)
might perform better.

In our previous work [8], we provided an experimental evaluation of the
techniques listed in Table 2 on a variety of publicly available data sets, col-
lected from different application domains, as well as artifical data sets, created
using an artificial data generator. The results on different data sets reveal that
no one technique is clearly superior to others. Most techniques show consis-
tency in performance on public data sets belonging to one domain but show
different performance for data sets from a different domain. This indicates a
relationship between the techniques and the nature of the data. These obser-
vations motivate a deeper study of the relationship between a technique and
a data set.

In this paper we build upon our previous work [8] to further understand the
relationship between the anomaly detection techniques and the nature of data.
To gain this understanding we use an analysis methodology, called Reference
Based Analysis (RBA) [9]. RBA was originally proposed to characterize and
visualize multivariate categorical data sets. In this paper we show how the
same framework can be adapted to characterize symbolic sequence data. We
visualize the symbolic sequences using these characteristics and demonstrate
its utility in understanding various aspects of the sequence data such as how
different are the normal sequences from the anomalous sequences and how
similar are the normal sequences to each other. We then show how different
anomaly detection techniques listed in Table 2 rely on one or more of such
characteristics to detect anomalies. Using these characteristics, we propose
two novel anomaly detection techniques for symbolic sequences, calledWIN1D

and WIN2D, which show consistently superior performance over the existing
techniques across the different data sets.

Application
Domains

Kernel
Based

Window
Based

Markovian Techniques

Techniques Techniques Fixed Variable Sparse
Intrusion
Detection

[5],[6],
[7],[10]

[7],[11],
[12],[13],
[14],[15]

[7], [16]

Proteomics [4]
Flight
Safety

[17] [18]

Table 2 Anomaly Detection Techniques for Symbolic Sequences.

1.1 Our Contributions

The specific contributions of this paper are as follows:
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– We provide an experimental evaluation of anomaly detection techniques
listed in Table 2 on a variety of data sets to explain the performance of a
variety of anomaly detection techniques on different types of sequence data
sets. The analysis presented in this paper allows relative comparison of the
different anomaly detection techniques and highlights their strengths and
weaknesses. A preliminary version of the results were published in [8] in
which the techniques were evaluated using the precision on anomaly class
metric. In this paper we also present results using the area under ROC
curve metric.

– We extend the RBA framework [9], which was originally proposed to ana-
lyze multivariate categorical data, to analyze symbolic sequence data sets.
We visualize the symbolic sequences using the characteristics provided by
the RBA framework and use the visualization to understand various as-
pects of the sequence data. We then use the characterization done by RBA
to understand the performance of the different techniques listed in Table
2. A preliminary version of this work has been presented in the context of
data sets collected from the domain of system call intrusion detection [19].

– Using the RBA framework, we propose two anomaly detection techniques
for symbolic sequences, called WIN1D and WIN2D, which show consis-
tently superior performance over the existing techniques across the differ-
ent data sets.

– We propose a novel artificial data generator that can be used to generate
validation data sets to evaluate anomaly detection techniques for sequences.
The generator allows creation of validation data sets with different char-
acteristics by varying the associated parameters to study the relationship
between the anomaly detection techniques and the different characteristics
of the data.

1.2 Organization

The rest of this paper is organized in two parts. In the first part (Sections
2–6), we provide a description of the different anomaly detection techniques
listed in Table 2 and an experimental comparison of their performance on a
variety of publicly available as well as synthetic data sets. In the second part
(Sections 7–3) we show how the RBA framework can be used to analyze sym-
bolic sequences. Specifically, we show how the RBA framework can be used
understand the relationship between different anomaly detection techniques
and the nature of sequence data in Sections. In Section 8, we show how the
RBA framework can be used to analyze symbolic sequences. Specifically, we
show how the RBA framework can be used understand the relationship be-
tween different anomaly detection techniques and the nature of sequence data
in Sections 9 and 10. In Section 11 we present two novel RBA based anomaly
detection techniques for symbolic sequences.



5

2 Problem Statement

The objective of the techniques evaluated in this paper can be stated as follows:

Definition 1 Given a set of n training sequences, T, and a set of m test
sequences S, find the anomaly score A(Si) for each test sequence Si ∈ S, with
respect to T.

All sequences consist of events that correspond to a finite alphabet, Σ. The
length of sequences in T and sequences in S might or might not be equal in
length. The training database T is assumed to contain only normal sequences,
and hence the techniques operate in a semi-supervised setting [20].

NotationIn this paper we will denote training sequences as T or Tj and test
sequences as S or Si. The size of the training data set is denoted by m and
size of the test data set is denoted by n.

3 Anomaly Detection Techniques for Sequences

We evaluated a variety of techniques that can be grouped into following three
categories:

3.1 Kernel Based Techniques

Kernel based techniques make use of kernel K by using the pairwise similar-
ity between sequences. In the problem formulation stated in Definition 1 the
sequences can be of different lengths, hence simple measures such as Ham-
ming Distance cannot be used. One possible measure is the normalized length
of longest common subsequence between a pair of sequences. This similarity
between two sequences S1 and S2, is computed as:

nLCS(S1, S2) =
|LCS(S1, S2)|√

|S1||S2|
(1)

Since the value computed above is between 0 and 1, the distance between S1

and S2 can be computed as [21]:

d(S1, S2) = 1− nLCS(S1, S2) (2)

Other similarity measures other than nLCS can be used as well, e.g., the spec-
trum kernel [22] or time series bitmaps [23]. We use nLCS in our experimental
study, since it was used in [17] to detect anomalies in discrete sequences and
appears promising.

Computing KernelFor a given test data set, a kernel matrix K ∈ ℜm×n is
computed such that:

K[i][j] = nLCS(Si, Sj), Si ∈ S, Sj ∈ T (3)
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3.1.1 Nearest Neighbors Based (kNN)

In the nearest neighbor scheme (kNN), for each test sequence Si ∈ S, the
distance to its kth nearest neighbor in the training set T is computed using
the kernel matrix K. This distance becomes the anomaly score A(Si) [21,24].

3.1.2 Clustering Based (CLUSTER)

This technique clusters the sequences in T into a fixed number of clusters, c,
by using the kernel matrix K. The test phase involves measuring the distance
of every test sequence, Si ∈ S, with the medoid of each CLUSTER. The
distance to the medoid of the closest CLUSTER becomes the anomaly score
A(Si).

3.2 Window Based Techniques

Window based techniques try to localize the cause of anomaly in a test se-
quence, within one or more windows, where a window is a fixed length sub-
sequence of the test sequence. One such technique called Threshold Sequence
Time-Delay Embedding (tSTIDE) [7] uses a sliding window of fixed size k to
extract k-length windows from the training sequences in T. The count of each
window occurring in T is maintained. During testing, k-length windows are
extracted from a test sequence Si. Each such window ωi is assigned a likelihood

score P (ωi) =
f(ωi)
f(∗) , where f(ωi) is the frequency of occurrence of window ωi

in T, and f(∗) is the total number of k length windows extracted from T.
For the test sequence Si, |Si|−k+1 windows are extracted, and a likelihood

score vector of length |Si|−k+1 is obtained. This score vector is then combined
to obtain the anomaly score for the sequence, A(Si), in the following way:

L(Si) =
1

|Si| − k + 1

|Si|−k+1∑
i=1

logP (ωi) (4)

A(Si) = −1 ∗ L(Si) (5)

If likelihood score for any window is 0, it is replaced with 10−6 since log 0 is
undefined. Other alternatives to combine the score vector to obtain A(Si) are
discussed in Section 3.4.

3.3 Markovian Techniques

Such techniques estimate the conditional probability for each symbol in a
test sequence Si conditioned on the symbols preceding it. Most of the tech-
niques utilize the short memory property of sequences [25]. This property
is a higher-order Markov condition which states that for a given sequence
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S = ⟨s1, s2, . . . s|S|⟩, the conditional probability of occurrence of a symbol si
is given as:

P (si|s1s2 . . . si−1) ≈ P (si|si−k+1 . . . si−1), i > k (6)

In the following, we investigate four Markovian techniques. Each one of
them computes a vector of scores, each element of which corresponds to the
conditional probability of observing a symbol, as defined in Equation 6. This
score vector is then combined to obtain A(Si) using equations similar to Equa-
tions 4 and 5, by replacing P (ωi) with P (si|si−k+1 . . . si−1).

3.3.1 Fixed Length Markovian Technique

A fixed length Markovian technique determines the probability P (sqi) of a
symbol sqi, conditioned on a fixed number of preceding symbols1. One such
technique uses an extended Finite State Automaton (FSA) to estimate the
conditional probabilities. We will refer to this technique as FSA in subsequent
discussions.

FSA extracts (n+1) sized subsequences from the training data T using a
sliding window. Each node in the automaton constructed by FSA corresponds
to a unique subsequence of n symbols that form the first n symbols of such n+1
length subsequences. An edge exists between a pair of nodes, Ni and Nj in the
FSA, if Ni corresponds to states si1si2 . . . sin and Nj corresponds to states
si2si3 . . . sinsjn. At every state of the FSA two quantities are maintained. One
is the number of times the n length subsequence corresponding to the state is
observed in T. The second quantity is a vector of frequencies corresponding to
number of times different edges emanating from this state are observed. Using
these two quantities, the conditional probability for a symbol, given preceding
n symbols, can be determined.

During testing, the automaton is used to determine a likelihood score for
every n + 1 subsequence extracted from test sequence Si which is equal to
the conditional probability associated with the transition from the state cor-
responding to first n symbols to the state corresponding to the last n symbols.
If there is no state in the automaton corresponding to the first n symbols, the
subsequence is ignored.

FSAzWe propose a variant of FSA technique, in which if there is no state
corresponding to the first n symbols of a (n+1) subsequence, we assign a low
score (e.g. 0) to that subsequence, instead of ignoring it. The intuition behind
assigning a low score to non-existent states is that anomalous test sequences
are more likely to contain such states, than normal test sequences. While FSA
ignores this information, we utilize it in FSAz.

1 A more general formulation that determines probability of l symbols conditioned on a
fixed number of preceding n symbols is discussed in [15].



8

3.3.2 Probabilistic Suffix Trees (PST )

A PST is a compact tree representation of a variable Markov chain, which
uses classical suffix trees as its index structure [25]. We evaluate a PST based
anomaly detection technique [4], that learns a PST from the training sequences
and then assigns a conditional likelihood score to each symbol of the test
sequence.

In a PST , each edge is labeled using a symbol, and each node represents
the subsequence obtained by traversing the path from root to the node, as well
as the number of times the subsequence is observed in the training sequences.
Each node also stores the conditional probability of observing each symbol
in the alphabet, given the subsequence represented by the node. The PST
is grown (training phase) by scanning the training sequences. The maximum
depth of the tree is fixed at k, which is a user defined parameter. Several
pruning criterion are applied to the PST to ensure that the PST contains only
those paths that occur significantly enough number of times in the training
sequences. The pruning can be done by applying thresholds to the frequency
of a node label, or to the conditional probability of a symbol emanating from
a given node. If no pruning is applied, the PST is equivalent to the FSA-z.

During the testing phase for the PST based technique the test sequence
is scanned and the PST is traversed simultaneously. For a symbol sqi in the
test sequence Si, its conditional probability is estimated by finding the longest
suffix of the k length subsequence that precedes sqi (in Si) and occurs as a
path in the PST . Thus, different symbols are conditioned on a different sized
history.

3.3.3 Sparse Markovian Technique

Sparse Markovian techniques are more flexible than variable Markovian tech-
niques, in the sense that they estimate the conditional probability of sqi based
on a subset of symbols within the preceding k symbols, which are not nec-
essarily contagious to sqi. In other words the symbols are conditioned on a
sparse history.

Lee et al. [13] use RIPPER classifier to build one such sparse model. In
this approach, a sliding window is applied to the training data T to obtain
k length windows. The first k − 1 positions of these windows are treated as
k − 1 categorical attributes, and the kth position is treated as a target class.
RIPPER [26] is used to learn rules that can predict the kth symbol given the
first k − 1 symbols. To ensure that there is no symbol that occurs very rarely
as the target class, the training sequences are duplicated 5 times.

For testing, k length subsequences are extracted from each test sequence Si

using a sliding window. For any subsequence, the first k−1 events are classified
using the classifier learnt in the training phase and the prediction is compared
to the kth symbol. RIPPER also assigns a confidence score associated with
the classification, denoted as conf(sqi) = 100T

M , where M is the number of
times the particular rule was fired in the training data, and T is the number
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of times the rule gave correct prediction. Lee et al. [13] assign the likelihood
score of symbol sqi as follows:

– For a correct classification, P (sqi) = 1.
– For a misclassification, P (sqi) =

1
conf(sqi)

= M
100T .

3.3.4 Hidden Markov Models Based Technique (HMM)

Techniques that apply HMMs for modeling sequences, transform an input se-
quence from the symbol space to the hidden state space. The key assumption
for the HMM based anomaly detection technique [7] is that the normal se-
quences can be effectively represented in the hidden state space, while anoma-
lous sequences cannot be.

The training phase involves learning an HMM with σ hidden states, from
the normal sequences in T using the Baum Welch algorithm.In the testing
phase, the optimal hidden state sequence for the given input test sequence
Si is determined, using the Viterbi algorithm.For every pair of consecutive
states, ⟨sHqi , sHqi+1⟩, in the optimal hidden state sequence, the state transition

matrix provides a likelihood score for transitioning from sHqi to sHqi+1. Thus a
likelihood score vector of length |Si| − 1 is obtained.

3.4 Combining Scores

For each of the window based and Markovian techniques, a likelihood score
vector is generated for a test sequence, Si. A combination function is then ap-
plied to obtain a single anomaly score A(Si). In Section 3.2, we presented one
such combination technique, average log score, which was originally used in the
technique [4]. L(Si) can be computed in other ways, such as average score [14],
minimum score, maximum score, and using a threshold [15,7]. For the thresh-
old method, a user defined threshold is employed to determine which scores
in the likelihood score vector are anomalous. The number of such anomalous
scores is the anomaly score A(Si) of the test sequence. Setting the threshold
often requires experimenting with different possible values, and then choosing
the best performing value.

4 Data Sets Used

In this section we describe various public as well as the artificially generated
data sets that we used to evaluate the different anomaly detection techniques.
We used public data sets that have been used earlier to evaluate sequence
anomaly detection techniques. To further illustrate certain aspects of different
techniques, we constructed different artificial data sets. The artificial data sets
were constructed such that we can control the nature of normal as well as
anomalous sequences and hence learn the relationship between the various
techniques and the nature of the data.
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For every data set, we first constructed a set of normal sequences, and a
set of anomalous sequences. A sample of the normal sequences was used as
training data for different techniques. A disjoint sample of normal sequences
and a sample of anomalous sequences were added together to form the test
data. The relative proportion of normal and anomalous sequences in the test
data determined the “difficulty level” for that data set. We experimented with
different ratios such as 1:1, 10:1 and 20:1 of normal and anomalous sequences.
Results on data sets with other ratios are consistent in relative terms, although
most techniques perform much better for the simplest data set that uses a ratio
1:1. Since in real sequences anomalies are rare, we report results when normal
and anomalous sequences were in 20:1 ratio in test data. In reality, the ratio of
normal to anomalous can be even larger than 20:1. But we were unable to try
such skewed distributions due to limited number of normal samples available
in some of the data sets.

Source Data Set |Σ| l̂ |SN| |SA| |T| |S|

PFAM

HCV 44 87 2423 50 1423 1050
NAD 42 160 2685 50 1685 1050
TET 42 52 1952 50 952 1050
RUB 42 182 1059 50 559 525
RVP 46 95 1935 50 935 1050

UNM
snd-cert 56 803 1811 172 811 1050
snd-unm 53 839 2030 130 1030 1050

DARPA
bsm-week1 67 149 1000 800 10 210
bsm-week2 73 141 2000 1000 113 1050
bsm-week3 78 143 2000 1000 67 1050

Table 3 Public data sets used for experimental evaluation. l̂ – Average Length of Sequences,
SN – Normal Data, SA – Anomalous Data, T – Training Data, S – Test Data.

4.1 Public Data Sets

Table 3 summarizes the various statistics of the data sets used in our experi-
ments. All data sets are available from our web site2. The distribution of the
symbols for normal and anomalous sequences is illustrated in Figures 1(a),1(b)
(RVP), 1(c),1(d) (snd-unm), and 1(e),1(f), (bsm-week2). The distribution of
symbols in snd-unm data is different for normal and anomalous data, while
the difference is not significant in RVP and bsm-week2 data. We will explain
how the normal and anomalous sequences were obtained for each type of data
set in the next subsections.

4.1.1 Protein Data Sets

The first set of public data sets were obtained from PFAM database (Release
17.0) [27] containing sequences belonging to 7868 protein families. Sequences

2 http://www.cs.umn.edu/ chandola/ICDM2008
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Fig. 1 Distribution of Symbols in Training Data Sets of Different Types.

belonging to one family are structurally different from sequences belonging to
another family. We choose five families, viz., HCV, NAD, TET, RVP, RUB.
For each family we construct a normal data set by choosing a sample from
the set of sequences belonging to that family. We then sample 50 sequences
from other four families to construct an anomaly data set. Similar data was
used by [4] to evaluate the PST technique. The difference was that the authors
constructed a test data for each pair of protein families such that samples from
one family were used as normal and samples from the other were used as test.
The PST results on PFAM data sets reported in this paper appear to be worse
than those reported in [4].
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4.1.2 Intrusion Detection Data Sets

The second set of public data sets were collected from two repositories of
benchmark data generated for evaluation of intrusion detection algorithms.
One repository was generated at University of New Mexico3. The normal se-
quences consisted of sequence of system calls generated in an operating system
during the normal operation of a computer program, such as sendmail, ftp, lpr
etc. The anomalous sequences consisted of sequence of system calls generated
when the program is run in an abnormal mode, corresponding to the opera-
tion of a hacked computer. We report results on two data sets, viz, snd-unm
and snd-cert. Other data sets were not used due to insufficient anomalous se-
quences to attain a 20:1 imbalance. For each of the two data sets, the number
of sequences in the normal as well as anomaly data was small (less than 200),
making it difficult to construct significant test and training data sets. The
increase the size of the data sets, we extracted subsequences of length 100 by
sliding a window of length 100 and a sliding step of 50. The subsequences ex-
tracted from the original normal sequences were treated as normal sequences
and the subsequences extracted from the original anomalous sequences were
treated as anomalous sequences if they did not occur in the normal sequences.

The other intrusion detection data repository was the Basic Security Mod-
ule (BSM) audit data, collected from a victim Solaris machine, in the DARPA
Lincoln Labs 1998 network simulation data sets [28]. The repository contains
labeled training and testing DARPA data for multiple weeks collected on a
single machine. For each week we constructed the normal data set using the
sequences labeled as normal from all days of the week. The anomaly data set
was constructed in a similar fashion. The data is similar to the system call
data described above with similar (though larger) alphabet.

4.2 Altered RVP Data Set

To better understand the performance of the anomaly detection techniques to
the nature of anomalies in the test data, we created a data set from the original
RVP data from the PFAM repository. A test data set was constructed by
sampling 800 most normal sequences not present in training data. Anomalies
were injected in 50 of the test sequences by randomly replacing k symbols in
each sequence with the least frequent symbol in the data set. The parameter k
controls the deviation of the anomalous sequences from the normal sequences.
The objective of this experiment was to evaluate how the performance of a
technique varies with k.

3 http://www.cs.unm.edu/∼immsec/systemcalls.htm
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4.3 Artificial Data Sets

As mentioned in the introduction, two types of anomalous sequences can ex-
ist, one which are arguably generated from a different generative mechanism
than the normal sequences, and the other which result from a normal sequence
deviating for a short span from its expected normal behavior. To study the
relationship between these two types of anomalous sequences and the perfor-
mance of different techniques, we designed an artificial data generator which
allows us to generate validation data sets with different types of anomalies.

We used a generic HMM, as shown in Figure 2 to model normal as well
as anomalous data. The HMM shown in Figure 2 has two sets of states,

S1

S2

S3

S4

S5

S6

S11

S10

S9

S8

S7

S12

a1

a2

a3

a4

a1

a2a6

a5 a3

a4

a6

a5

λ

1 − λ

Fig. 2 HMM used to generate artificial data.

{S1, S2, . . . S6} and {S7, S8, . . . S12}.
Within each set, the transitions corresponding to the solid arrows shown in

Figure 2 were assigned a transition probability of (1− 5β), while other transi-
tions were assigned transition probability β. No transition is possible between
states belonging to different sets. The only exception are S2S8 for which the
transition probability is λ, and S7S1 for which the transition probability is
1− λ. The transition probabilities S2S3 and S7S8 are adjusted accordingly so
that the sum of transition probabilities for each state is 1.

The observation alphabet is of size 6. Each state emits one alphabet with
a high probability (1−5α), and all other alphabets with a low probability (α).
Figure 2 depicts the most likely alphabet for each state.

The initial probability vector π of the HMM is constructed such that either
π1 = π2 = . . . = π6 = 1 and π7 = π8 = . . . = π12 = 0; or vice-versa.

Normal sequences are generated by setting λ to a low value and π to
be such that the first 6 states have initial probability set to 1

6 and rest 0.
If λ = β = α = 0, the normal sequences will consist of the subsequence
a1a2a3a4a5a6 getting repeated multiple times. By increasing λ or β or α,
anomalies can be induced in the normal sequences.
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This generic HMM can be tuned to generate two types of anomalous se-
quences. For the first type of anomalous sequences, λ is set to a high value
and π to be such that the last 6 states have initial probability set to 1

6 and
rest 0. The resulting HMM is directly opposite to the HMM constructed for
generating normal sequences. Hence the anomalous sequences generated by
this HMM are completely different from the normal sequences.

To generate second type of anomalous sequences, the HMM used to gener-
ate the normal sequence is used, with the only difference that λ is increased to
a higher value than 0. Thus the anomalous sequences generated by this HMM
will be similar to the normal sequences except that there will be short spans
when the symbols are generated by the second set of states.

By varying λ, β, and α, we generated several evaluation data sets (with
two different type of anomalous sequences). We will present the results of our
experiments on these artificial data sets in next section.

5 Evaluation Methodology

The techniques investigated in this paper assign an anomaly score to each
test sequence Si ∈ S, such that the sequence with highest anomaly score is
considered as most anomalous, and so on. To compare the performance of
different techniques in such a scenario, we first convert the ranked output for
each sequence in the test data set into a binary label (normal or anomalous)
in the following manner:

1. Rank the test sequences in decreasing order based on the anomaly scores.
2. Label the sequences in the top p portion of the sorted test sequences as

anomalous, and rest sequences as normal, where 1 < p ≤ |S|.

We evaluate the techniques using two different metrics. The first metric uses
a fixed value of p. Let there be t true anomalous sequences in top p ranked
sequences. We measure the accuracy of the techniques as:

Accuracy =
t

p

We report the accuracy when p = q, where q is number of true anomalous
sequences in the test data set. The accuracies for other values of p also showed
consistent results.

One drawback of the above metric is that it is highly dependent on the
choice of p. A technique might show 100% accuracy for a particular value of
p but show 50% accuracy for 2p. To overcome this drawback we use a second
evaluation metric.

The second metric used to evaluate the anomaly detection techniques is to
obtain the area under the ROC curve (AUC) obtained by varying p from 1 to
|S|. The advantage of AUC is that it is not dependent on the choice of p.



15

6 Experimental Results

The experiments were conducted on a variety of data sets discussed in Sec-
tion 4. The various parameter settings associated with each technique were
explored. The results presented here are for the parameter setting which gave
best results across all data sets, for each technique.

6.1 Sensitivity to Parameters

The performance of CLUSTER improved as c was increased from 2 onwards,
but stabilized for values greater than 32. The best overall performance was
observed for c = 32. For kNN , the performance was comparable for a wide
range of k (2 ≤ k ≤ 32) but deteriorated for higher values of k. The best
overall performance was observed for k = 4. For tSTIDE as well as the
Markovian techniques (FSA, FSAz, PST , RIPPER), the performance was
sensitive to the choice of window length or the length of the history. For low
values of this length (≤ 5) or for values higher than 10, the performance was
generally poor. The best performing setting was window size of 6 for tSTIDE
and history length of 5 for the Markovian techniques. For PST , an additional
parameter is Pmin which controls the threshold under which the counts for a
given subsequence are considered insignificant. We observed that performance
of PST was highly sensitive to this parameter. If Pmin was set to very low
(≈ 0), PST performed similar to FSAz, while if Pmin was set to be higher than
0.1, the performance was poor. The best performance of PST was observed for
Pmin = 0.01. ForHMM , the number of hidden states σ is a critical parameter.
We experimented with values ranging from 2 to |Σ|. Our experiments reveal
that the performance of HMM does not vary significantly for different values
of σ. The best overall performance of HMM was observed for σ = 4 for public
data sets and σ = 12 for the artificial data sets.

We experimented with various combination functions for different tech-
niques, and found that the average log score function has the best performance
across all data sets. Hence, results are reported for the average log score func-
tion. Results with other combination techniques are available in our technical
report [29].

6.2 Accuracy vs. AUC

We evaluated the different techniques using the two evaluation metrics de-
scribed in Section 5, Accuracy and AUC. Both metrics show similar relative
performance for the different techniques. We will compare the performance
using the accuracy metric.
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6.3 Results on Public Data Sets

Tables 4 and 5 summarize the accuracy and AUC results on the 10 public
data sets. CLUSTER and kNN show good performance for PFAM and UNM
data sets but perform moderately on DARPA data sets. FSA and FSAz show
consistently good performance for all public data sets. tSTIDE performs well
for PFAM data sets but its performance degrades for both UNM and DARPA
data sets. PST performs average to poor for all data sets including the PFAM
data sets for which it was originally used. The HMM technique performs
poorly for all public data sets. The reasons for the poor performance is that
HMM technique makes an assumption that the normal sequences can be
represented with σ hidden states, which might not be true for the public data
sets.

PFAM UNM DARPA
snd- snd- bsm- bsm- bsm-

hcv nad tet rvp rub unm cert week1 week2 week3 Avg
cls 0.54 0.46 0.84 0.86 0.76 0.76 0.94 0.20 0.36 0.52 0.62
knn 0.88 0.64 0.86 0.90 0.72 0.84 0.94 0.20 0.52 0.48 0.70
tstd 0.90 0.74 0.50 0.90 0.88 0.58 0.64 0.20 0.36 0.60 0.63
fsa 0.88 0.66 0.48 0.90 0.80 0.82 0.88 0.40 0.52 0.64 0.70
fsaz 0.92 0.72 0.50 0.90 0.88 0.80 0.88 0.50 0.56 0.66 0.73
pst 0.74 0.10 0.66 0.50 0.28 0.28 0.10 0.00 0.10 0.34 0.31
rip 0.52 0.20 0.36 0.66 0.72 0.72 0.70 0.20 0.18 0.50 0.48

hmm 0.10 0.06 0.20 0.10 0.00 0.00 0.00 0.00 0.02 0.20 0.07
Avg 0.69 0.45 0.55 0.72 0.63 0.60 0.64 0.21 0.33 0.49

Table 4 Accuracy results for public data sets.

PFAM UNM DARPA
snd- snd- bsm- bsm- bsm-

hcv nad tet rvp rub unm cert week1 week2 week3 Avg
cls 0.98 0.96 1.00 1.00 0.99 0.99 1.00 0.74 0.90 0.91 0.94
knn 1.00 0.98 1.00 1.00 0.99 1.00 1.00 0.75 0.92 0.91 0.95
tstd 0.99 0.97 0.98 1.00 1.00 0.97 0.92 0.62 0.73 0.80 0.90
fsa 0.98 0.97 0.92 0.99 0.99 0.99 0.96 0.88 0.90 0.97 0.96
fsaz 1.00 0.98 0.98 1.00 1.00 0.97 0.96 0.88 0.91 0.97 0.96
pst 0.99 0.54 0.98 0.97 0.91 0.93 0.88 0.35 0.42 0.54 0.75
rip 0.70 0.45 0.37 0.97 0.96 0.98 0.94 0.79 0.70 0.84 0.77

hmm 0.58 0.50 0.71 0.55 0.24 0.04 0.03 0.43 0.50 0.77 0.43
Avg 0.90 0.79 0.87 0.93 0.88 0.86 0.84 0.68 0.75 0.84

Table 5 AUC results for public data sets.

Overall, one can observe that the performance of techniques in general is
better for PFAM data sets and on UNM data sets, while the DARPA data
sets are more challenging.
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6.4 Results on Altered RVP Data Set

Figure 3 shows the performance of the different techniques on the altered RVP
data set, for different values of k from 1 to 10. We observe that FSAz performs
remarkably well for these values of k. CLUSTER, tSTIDE, FSA, PST ,
and RIPPER exhibit moderate performance, though for values of k closer to
10, RIPPER performs better than the other 4 techniques. For k > 10, all
techniques show better than 90% accuracy because the anomalous sequences
become very distinct from the normal sequences, and hence all techniques
perform comparably well.
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Fig. 3 Results for altered RVP data sets

6.5 Results on Artificial Data Sets

Tables 6 and 7 summarize the accuracy and AUC results on 6 (d1–d6) ar-
tificial data sets.The normal sequences in data set d1 were generated with
λ = 0.01, β = 0.01, α = 0.01. The anomalous sequences were generated using
the first setting as discussed in Section 4.3, such that the sequences were pri-
marily generated from the second set of states. For data sets d2–d6, the HMM
used to generate normal sequences was tuned with β = 0.01, α = 0.01. The
value of λ was increased from 0.002 to 0.01 in increments of 0.002. The anoma-
lous sequences for data sets d2–d6 were generated using the second setting in
which λ is set to 0.1.

From Table 6, we observe that PST is the most stable technique across
the artificial data sets, while the deterioration is most pronounced for FSA
and FSAz. Both kNN and CLUSTER also get negatively impacted as the λ
increases but the trend is gradual than for FSAz. The performance of HMM
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d1 d2 d3 d4 d5 d6 Avg
cls 1.00 0.80 0.74 0.74 0.58 0.64 0.75
knn 1.00 0.88 0.76 0.76 0.60 0.68 0.78
tstd 1.00 0.82 0.64 0.64 0.48 0.50 0.68
fsa 1.00 0.88 0.50 0.52 0.24 0.28 0.57
fsaz 1.00 0.92 0.60 0.52 0.32 0.38 0.62
pst 1.00 0.84 0.82 0.76 0.68 0.68 0.80
rip 1.00 0.78 0.64 0.66 0.52 0.44 0.67

hmm 1.00 0.50 0.34 0.42 0.16 0.66 0.51
Avg 1.00 0.80 0.63 0.63 0.45 0.53

Table 6 Accuracy results for artificial data sets.

d1 d2 d3 d4 d5 d6 Avg
cls 1.00 0.95 0.97 0.98 0.94 0.95 0.97
knn 1.00 0.96 0.98 0.98 0.96 0.95 0.97
tstd 1.00 0.96 0.98 0.98 0.96 0.95 0.97
fsa 1.00 0.96 0.98 0.98 0.96 0.95 0.97
fsaz 1.00 0.96 0.98 0.98 0.96 0.95 0.97
pst 1.00 0.96 0.98 0.98 0.96 0.95 0.97
rip 1.00 0.96 0.98 0.98 0.96 0.95 0.97

hmm 1.00 0.96 0.98 0.98 0.96 0.95 0.97
Avg 1.00 0.96 0.98 0.98 0.96 0.95

Table 7 AUC results for artificial data sets.

on the artificial data sets is better than for public data sets since the training
data was actually generated by a 12 stateHMM and theHMM technique was
trained with σ = 12; thus the HMM model effectively captures the normal
sequences.

6.6 Relative Performance of Different Techniques

Kernel based techniques are found to perform well for data sets in which the
anomalous sequences are significantly different from the normal sequences; but
perform poorly when the different between the two is small. This is due to the
nature of the normalized LCS similarity measure used in the kernel based
techniques. Our experiments show that kNN technique is somewhat better
suited than CLUSTER for anomaly detection, which is expected, since kNN
is optimized to detect anomalies while the clustering algorithm in CLUSTER
is optimized to obtain clusters in the data.

FSAz is consistently superior among all techniques, especially for data
sets in which the anomalous sequences are minor deviations from normal se-
quences. The performance of FSAz is poor when the normal sequences contain
rare patterns. FSAz is consistently superior to FSA. Performance of tSTIDE
is comparable to FSAz when the anomalous sequences are significantly dif-
ferent from the normal sequences, but is inferior to FSAz when the difference
is small. tSTIDE is less affected by the presence of rare patterns in the nor-
mal sequences than FSAz. for all PFAM data sets but is relatively poor on
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DARPA and UNM data sets. tSTIDE performs significantly better on arti-
ficial data sets. PST performs relatively worse than other techniques, except
for cases where the normal sequences themselves contain many rare patterns.
RIPPER is also an average performer on most of the data sets, and is rela-
tively better than PST , indicating that using a sparse history model is better
than a variable history model.

For the public data sets, we found the HMM technique to perform poorly.
The reasons for the poor performance of HMM are twofold. The first reason is
that HMM technique makes an assumption that the normal sequences can be
represented with σ hidden states. Often, this assumption does not hold true,
and hence the HMM model learnt from the training sequences cannot emit
the normal sequences with high confidence. Thus all test sequences (normal
and anomalous) are assigned a low probability score. The second reason for
the poor performance is the manner in which a score is assigned to a test
sequence. The test sequence is first converted to a hidden state sequence,
and then a (1 + 1) FSA is applied to the transformed sequence. We have
observed from our experiment using FSA that a (1+1) FSA does not perform
well for anomaly detection. The performance of HMM on artificial data sets
(See Table 6) illustrates this argument. Since the training data was actually
generated by a 12 state HMM and the HMM technique was trained with
σ = 12; thus the HMM model effectively captures the normal sequences. The
results of HMM for artificial data sets are therefore better than for public
data sets, but still slightly worse than other techniques because of the poor
performance of the (1 + 1) FSA. When the normal sequences were generated
using an HMM , the performance improves significantly. The hidden state
sequences, obtained as a intermediate transformation of data, can actually be
used as input data to any other technique discussed here. The performance of
such an approach will be investigated as a future direction of research.

7 Reference Based Analysis Framework for Symbolic Sequences

The results on different data sets in Section 6 reveal that no one technique is
clearly superior to others. Most techniques show consistency in performance
on public data sets belonging to one domain but show different performance
for data sets from a different domain. This indicates a relationship between the
techniques and the nature of the data. In the artificial data sets generated from
the data generator as well as the altered RVP data sets, we further studied this
relationship by modifying the nature of the data using one or more tunable
parameters. These observations motivate a deeper study of the relationship
between a technique and a data set.

From this section onwards, we study the relationship between the anomaly
detection techniques and the nature of data. Using the RBA framework [9],
we characterize symbolic sequence data. We visualize the symbolic sequences
using these characteristics which is useful to understand various aspects of the
sequence data such as how different are the normal sequences from the anoma-
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lous sequences and how similar are the normal sequences to each other. We
then show how different anomaly detection techniques evaluated in Section 6
rely on one or more of such characteristics to detect anomalies. Using these
characteristics, we propose two novel anomaly detection techniques for sym-
bolic sequences, called WIN1D and WIN2D, which show consistently superior
performance over the existing techniques across the different data sets.

8 Characterizing Sequence Data

The results on different data sets in Section 6 reveal that no one technique is
clearly superior to others. Most techniques show consistency in performance
on public data sets belonging to one domain but show different performance
for data sets from a different domain. This indicates a relationship between
the techniques and the nature of the data. In the artificial data sets generated
from the data generator as well as the altered RVP data sets, we further
studied this relationship by modifying the nature of the data using one or
more tunable parameters. These observations motivate a deeper study of the
relationship between a technique and a data set. To facilitate such a study,
we first characterize a data set and then identify the relationship between a
technique and the data characteristics.

We characterize a test sequence data set containing of normal and anoma-
lous sequences with respect to a base data set, containing only normal se-
quences4. We describe different alternatives to characterize sequence data
which are used by one or more of the techniques discussed in this paper,
as will be discussed in Sections 9 and 10.

8.1 1-D Frequency Profiles

The first characterization is motivated from window based techniques that
rely on the frequency of a k length window in a given sequence for anomaly
detection. In this section we refer to a k length window as a k-window for
brevity. Each k-window is associated with a frequency (denoted as fk), i.e.,
the number of times it occurs in the training sequences.

A 1-D frequency profile for a test sequence can be constructed as follows.
First, all k-windows from the test sequence are extracted and their frequencies
fk are computed from the training sequences. The frequencies are “binned”
into a fixed number (p) of bins. Since windows with fk = 0 are of special
interest, the first bin stores the windows with exactly fk = 0. The other p− 1
bins divide the range 1 : max into equal width intervals, where max is the
maximum frequency of any window in the given data set. The values in each
bin are normalized to lie between 0 and 1 by dividing them by the total number

4 This framework to characterize a given data set with respect to a base or reference data
set was originally proposed for characterizing categorical data [9].
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of windows in the given sequence. Thus each test sequence can be mapped into
a ℜp space.

8.1.1 Average 1-D Frequency Profiles

To characterize a given test data set, we aggregate the 1-D frequency profiles.
We construct the average 1-D frequency profiles for the normal test sequences
and anomalous test sequences separately. It should be noted that the average
profile might not be the best representation of the profiles. For example, let
the test set contain 4 anomalous sequences. Using four bins (p = 4), let the fre-
quency profiles for the four anomalous sequences be (1.00, 0, 0, 0), (0, 1.00, 0, 0),
(0, 0, 1.00, 0), and (0, 0, 0, 1.00). The average frequency profile for the anoma-
lous sequences will be (0.25, 0.25, 0.25, 0.25) which does not provide an ac-
curate representation of the actual profiles. But if the individual frequency
profiles are similar to each other, the average profile will be representative.

A test sequence data set can be characterized with respect to a normal
data set by taking the difference between the average 1-D frequency profiles for
normal and anomalous test sequences. We will describe how this characteristic
can be used to explain the behavior of window based techniques in Section 9.

8.2 2-D Frequency Profiles

The second characterization is motivated from Markovian techniques that rely
on the frequency of a k length window as well as the frequency of the k − 1
length prefix of the window, in a given sequence for anomaly detection. Thus,
each k-window is associated with a tuple (fk, fk−1), where fk is the frequency
of occurrence of the k-window and fk−1 is the frequency of occurrence of the
k − 1 length prefix of the given k-window in the training sequences.

A 2-D frequency profile for a test sequence can be constructed as follows.
First, all k-windows from the test sequence are extracted and the associated
tuples (fk, fk−1) are computed from the training sequences. The fk frequencies
are binned into p bins in the same manner as the 1-D frequency profiles. Simi-
larly, the fk−1 frequencies are binned into p bins. Thus, every tuple (fk, fk−1)
is assigned to a “cell” (or grid) on a p × p grid. The values in each cell are
normalized to lie between 0 and 1 by dividing them by the total number of
windows in the given sequence. Thus each test sequence can be mapped into
a ℜp×p space.

Note that the column aggregation of the 2-D frequency profile for a test
sequence will give the 1-D frequency profile for the given test sequence.

8.2.1 Average 2-D Frequency Profiles

To characterize a given sequence data set, using the 2-D frequency profiles, we
follow the same procedure as for 1-D frequency profiles. The frequency profiles
for normal and anomalous sequences are aggregated separately to obtain an



22

average normal 2-D frequency profile and an average anomalous 2-D frequency
profile, respectively.

A test sequence data set can be characterized with respect to a normal
data set by taking the difference between the average 2-D frequency profiles for
normal and anomalous test sequences. We will describe how this characteristic
can be used to explain the behavior of Markovian techniques in Section 9.

9 Relationship Between Performance of Techniques and Frequency
Profiles

In this section we relate the performance of the window based (tSTIDE) and
Markovian techniques (FSA, FSAz, PST , and RIPPER) to the 1-D and
2-D frequency profiles defined in Section 8.1.

9.1 tSTIDE

The performance of tSTIDE can be explained using the 1-D frequency profiles
described in the previous section. The anomaly score assigned by tSTIDE is
inversely proportional to the frequency of the k-windows in a given sequence.
Hence the difference in the 1-D frequency profiles for normal and anomalous
test sequences determines the relative performance of tSTIDE on a given test
data set.

For example, the average 1-D frequency profiles for rvp data set in Figure
4(a) are significantly different, and hence the performance of tSTIDE is 90%
(See Table 4). For bsm-week1 data set in Figure 4(b), the difference is not
significant, and hence the performance of tSTIDE is relatively poor (=20%).
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9.2 FSA

The tSTIDE technique distinguishes between normal and anomalous test
sequences in terms of the frequency of the k-windows, fk. Often, fk alone is
not distinguishing enough (see Figure 4(b)). The FSA technique addresses
this issue by considering the frequency of a k-window as well as the frequency
of the k − 1 length suffix of the k-window.

The performance of FSA can be explained using the 2-D frequency profiles
described in previous section. FSA assigns anomaly score to a sequence using
the values fk and fk−1 for every k window. Hence the difference in the aver-
age 2-D frequency profiles for normal and anomalous sequences determines it
relative performance on the given data set.

For example, the average 2D frequency profiles for the bsm-week1 data
set are shown in Figures 5(a) and 5(b) for normal and anomalous sequences,
respectively. The color of each cell represents the magnitude of the relative pro-
portion of k-windows falling in that cell. We compare the two profiles with the
1D frequency profiles shown in Figure 4(b). The absolute difference between
normal and anomalous frequency profiles is shown in Figure 5(c) with marker
“+” indicating that normal test sequences had higher value for that cell than
the anomalous test sequences, and marker “△” indicating that normal test
sequences had lower value for that cell than the anomalous test sequences.
Figures 6 and 7 show the plots (differences only) for other public data sets.
Note that if the 2D profiles are collapsed onto the y-axis, we will get the cor-
responding 1D profiles. We note that even though the normal and anomalous
sequences are not differentiable when only fk is considered, the difference is
significant when both fk and fk−1 are considered. This is the reason why FSA
performs better than tSTIDE on the bsm-week1 data set.

Comparing tSTIDE and FSAThe key distinction between tSTIDE and FSA
is that the former technique makes use of the frequencies of k-windows while
the latter makes use of the frequencies of k-windows and the frequencies of their
k− length suffixes. This distinction is illustrated in Figure 8 which shows the
scores assigned by tSTIDE and FSA to windows, w(fk, fk−1). These scores
are also referred to as likelihood scores and are the inverse of the anomaly
score of the windows. Since fk ≤ fk−1, the entries above the lower diagonal
are ignored.

FSA ignores the k-windows for which fk−1 = 0, i.e., the bottom left corner
of Figure 8(b). It is clear that the scores assigned by tSTIDE are independent
of fk−1 and are linearly proportional to fk. Thus only high frequency windows
will be assigned a high likelihood score by tSTIDE. But for FSA, k-windows
with low fk can still be assigned a high score, if the corresponding value of
fk−1 is also low. This key difference accounts for a key strength and weakness
of tSTIDE and FSA.

Consider a scenario in which the training data set is not pure but contains
one anomalous sequence, such that most of the k-windows (for a given value of
k) do not occur in any other training sequence. Let there be a truly anomalous
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sequence in the test data set which is similar to the one anomalous training
sequence. Most of the k-windows extracted from this test sequence will have
fk = 1. tSTIDE will assign a high anomaly score to this test sequence. Though
the value of fk−1 cannot be guaranteed, it is likely that fk−1 ≈ 1. Thus FSA
will assign a high likelihood score to the k-windows of the anomalous test
sequence, and hence assign it a low anomaly score. Thus tSTIDE is a better
technique in this scenario.

Now consider a different scenario, in which the training data set contains
a sequence that consists of k-windows that do not occur in any other training
sequence, but are normal. Let the test data contain one truly normal sequence
similar to this training sequence. tSTIDE will assign a high anomaly score
to this test sequence because the windows extracted from this sequence will
have fk = 1. But, similar to the argument for the previous scenario, FSA will
assign a low anomaly score. Thus FSA is a better technique in this scenario.

To summarize, tSTIDE is more robust when the training data might not
be pure, i.e., it might contain anomalous sequences. FSAz is a better choice
when the training data has rare but normal patterns (windows) that have to
be learnt.

9.3 FSAz

One issue with FSA is that it ignores the k-windows for which fk = fk−1 =
0. But often, such windows can differentiate between normal and anomalous
sequences. The plots of differences between the 2D average frequency profiles
for normal and anomalous sequences, shown in Figures 6 and 7, show that for
several data sets, anomalous test sequences have a higher proportion of such
windows than the normal data sets. Our proposed technique, FSAz, utilizes
this information by assigning a likelihood score of 0 to such sequences, instead
of ignoring them. This makes FSAz perform better than FSA for most data
sets.

9.4 PST

An issue with FSA (and FSAz), as noted earlier, is that they estimate the
conditional probability of a symbol, based on its fixed length history, even if
the history occurs once in the training sequences. Thus such estimates can be
unreliable, and hence make the techniques highly susceptible to presence of
anomalies in the training set. PST addresses this issue by conditioning the
probability of a symbol on its k length history, only if the history occurs a
significant number of times in the training sequences. If the frequency of the
history is low, i.e., the conditional probability estimate is unreliable, it uses
the longest suffix of the history which satisfies the reliability threshold.

The score assigned by PST to a k-window is lower bounded by the score
assigned by FSAz. The actual score assigned by PST not only depends on fk,
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fk−1, but also on δ, which is a threshold on fk−1. The value of δ is determined
using user-defined parameters and the training sequences (See Section 3.3.2).
For a given k-window, if fk−1 ≥ δ the score assigned by PST is same as
FSAz. Otherwise, PST chooses the longest suffix of the k window of length
j (2 ≤ j ≤ k), such that fj−1 ≥ δ. If f1 < δ, PST assigns the score equal to
the probability of observing the last (kth) symbol of the given window.

For example, Figures 9(a)–9(e) show the difference in the frequency profiles
for normal and anomalous test sequences for the rub data set for different
values of k. To assign a score to a k-window for k = 6, the PST technique will
first consider the frequency profile for k = 6. Let us assume that the k-window
to be scored has fk−1 < λ. In this case PST will substitute the score with
the score of a window of length k − 1 in the frequency profile for k − 1 length
windows. If for the k − 1 window, fk−2 ≥ λ, the corresponding score will be
used, otherwise the frequency profile for k − 3 is considered, and so on.

Using this understanding of PST , we can explain why PST performs sig-
nificantly poorly than FSAz for most of the public data sets. Let us consider
the data set rub. Figure 9(a) shows difference in the frequency profiles of nor-
mal and anomalous test sequences for k = 6. The distinguishing cells in the
profile are mostly located in the bottom left corner, and there is a single dis-
tinguishing cell in the upper right corner. Both PST and FSAz will assign
similar scores to the k-windows belonging to the cell in the upper right corner.
For the cell in the bottom leftmost corner, FSAz will assign a 0 score, and
for other cells FSAz will assign a higher score. Thus FSAz will be able to
distinguish between normal and anomalous test sequences, which supports our
experimental finding that the performance of FSAz on this data set is (0.88).
For PST , all k-windows belonging to the cells in the bottom left corner will
have fk−1 < λ, and hence will be substituted with scores for shorter suffix
of the k-windows. Thus the scores for windows to the bottom leftmost cell in
Figure 9(a) will be scored same as the shorter windows (of length j < k) in
Figures 9(b)–9(e) for which fj−1 ≥ δ. But it is evident from the plots that
normal and anomalous test sequences are not significantly distinguishable for
higher values of fj−1. This is reason why PST performs poorly for this data
set (0.28).

While the above mentioned behavior of PST is an obvious disadvantage
for most of the data sets, it can also favor PST in certain cases. For example,
PST performs well in comparison to FSAz on the artificial data set d6. The
frequency profiles of normal and anomalous test sequences for d6 are shown for
different values of k in Figures 10(a) – 10(e). We observe that the frequency
profiles for normal and anomalous test sequences are not distinguishable for
k = 6 and hence FSAz performs poorly (0.38). But when frequency profiles
for lower values of j ≤ 3 are considered by the PST , the profiles for normal
and anomalous sequences are relatively more distinguishable (even for larger
values of fj−1) and hence PST performs better (0.68).
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9.5 RIPPER

The motivation behind RIPPER is same as PST , i.e., if the fixed length
history of a symbol in a test sequence does not have a reliable frequency in
the training sequences, the symbol is conditioned on a subset of the history.
The difference being that the subset is not the suffix of the history (as is the
case with PST ), but a subsequence of the history.

RIPPER, like PST , assigns score to a k-window which is lower bounded
by the score assigned by FSAz. The actual score assigned by PST depends
on the RIPPER rule that is “fired” for the k− 1 prefix of the given window.
If the target of the fired rule matches the kth symbol of the given window, the
likelihood score is 1, else the likelihood score is the inverse of the confidence
associated with the rule. It is difficult to analytically estimate the actual scores
assigned by RIPPER, but generally, the scores assigned by RIPPER are
higher than FSAz but lower than PST .

As mentioned earlier, the scores assigned by RIPPER are same as FSAz
for higher values of fk. For lower values of fk the scores depend on the dis-
tribution of k-windows in the training data set as well as how the underlying
classifier (RIPPER) learns the rules and what is the order in which the rules
are applied. Generally speaking, it can be stated that the scores assigned by
RIPPER to such windows is greater than 0 but lower than the score assigned
by PST to such windows.

The above mentioned behavior of RIPPER results in its poor performance
in cases in which the cells with lower values of fk are distinguishing and the
anomalous test sequences have higher proportion of windows in that cell than
the normal test sequences. RIPPER assigns a higher overall likelihood score
to the anomalous test sequences and hence is not able to distinguish them from
normal sequences. For all PFAM data sets the distinguishing cells have lower
fk value, resulting in poor performance of RIPPER. For UNM data sets, the
distinguishing cells have higher values for fk and hence the performance of
RIPPER is very close to that of FSAz.

10 Impact of Nature of Similarity Measure on Performance of
Anomaly Detection Techniques

Kernel based techniques (kNN and CLUSTER) are distinct from the window
based and Markovian techniques because they rely on the similarity between
a test sequence and training sequences to assign anomaly score to the test
sequence. Thus their performance can be explained using the average similarity
to training sequences characteristic, as described in Section 3.1.

One distinction between normal and anomalous sequences is that normal
test sequences are expected to be more similar (using a certain similarity mea-
sure) to training sequences, than anomalous test sequences. If the difference in
similarity is not large, this characteristic will not be able to accurately distin-
guish between normal and anomalous sequences. This characteristic is utilized
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by kernel based techniques (kNN and CLUSTER) to distinguish between nor-
mal and anomalous sequences.

For example, Figure 11(a) shows the histogram of the average (nLCS) sim-
ilarities of test sequences in the artificial data set d1 to the training sequences.
The normal test sequences are more similar to the training sequences, than
the anomalous test sequence. This indicates that techniques that use similar-
ity between sequences to distinguish between anomalous and normal sequences
will perform well for this data set. From Table 6, we can observe that the per-
formance of CLUSTER as well as kNN is 100% on d1. A similar histogram
for data set d6 is shown in Figure 11(b), which shows that average similar-
ities of normal test sequences and the average similarities of anomalous test
sequences are very close to each other. This confirms the observation in Table
6 that CLUSTER and kNN should perform poorly for this data set.

We quantify the above characteristic by computing the average sequence
similarity for each test sequence. Let the average of the average similarities for
normal test sequences be denoted as sn, and average of the average similarities
for anomalous test sequences be denoted as sa. If for a given data set, the
difference sn − sa is large, kNN and CLUSTER are expected to perform well
on that data set, and vice-versa.

snd- snd- bsm- bsm- bsm-
hcv nad tet rvp rub unm cert week1 week2 week3

sn 0.53 0.48 0.67 0.82 0.75 0.99 0.99 0.97 0.98 0.97
sa 0.38 0.38 0.37 0.36 0.37 0.50 0.38 0.88 0.81 0.73

sn − sa 0.15 0.10 0.30 0.46 0.38 0.49 0.61 0.09 0.17 0.24

Table 8 Values of sn, sa for the public data sets.

d1 d2 d3 d4 d5 d6
sn 0.87 0.87 0.86 0.86 0.86 0.86
sa 0.45 0.63 0.63 0.73 0.76 0.78

sn − sa 0.42 0.24 0.23 0.13 0.10 0.08

Table 9 Values of sn, sa for the artificial data sets.

Tables 8 and 9 show the values of sn, sa, and sn − sa, for the real and
artificial data sets, respectively. The performance of both kNN and CLUSTER
is highly correlated with the difference sn − sa.

11 Using RBA Features for Anomaly Detection

A key aspect of the RBA framework is that it maps data instances into a
multivariate continuous space, where normal and anomalous instances can be
distinguished from each other. Thus, applying the RBA framework is equiv-
alent to extracting features from the sequence data set. In this section, we
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propose two novel techniques based on these features to detect anomalies in a
given test data set. We denote the novel techniques as WIN1D and WIN2D,
since they utilize the 1-D and 2-D frequency profiles discussed in Sections 8.1
and 8.2, respectively.

The motivation behind these two techniques is the fact that several existing
techniques implicitly utilize the difference between the relative frequencies of
the k-windows to distinguish between normal and anomalous sequences (See
Section 9).

The algorithm for the first technique, WIN1D, is as follows:

WIN1D(k, p, nn,S,T)
1. For each training sequence Tj ∈ T, calculate its 1-D frequency profile

with respect to T (denoted as Ṫj) with window size k and number of
bins as p.

2. For each test sequence Si ∈ S, calculate its 1-D frequency profile with
respect to T (denoted as Ṡi) with window size k and number of bins as
p.

3. For each “mapped” test sequence, Ṡi, calculate its anomaly score as
equal to the distance to its nnth nearest neighbor in Ṫ5 using Euclidean
distance metric.

The algorithm for the second technique, WIN2D, is as follows:

WIN2D(k, p, nn,S,T)
1. For each training sequence Tj ∈ T, calculate its 2-D frequency profile

with respect to T (denoted as T̈j) with window size k and number of
bins as p.

2. For each test sequence Si ∈ S, calculate its 2-D frequency profile with
respect to T (denoted as S̈i) with window size k and number of bins as
p.

3. For each “mapped” test sequence, S̈i, calculate its anomaly score as
equal to the distance to its nnth nearest neighbor in T̈6using Euclidean
distance metric.

The inputs to both techniques are the training data set, T, test data set, S,
window size, k(≥ 2), number of bins, p(≥ 2), and number of nearest neighbors
to analyze, nn.

11.1 Results on Public and Artificial Data Sets

We evaluate the performance of the proposed techniques on the public and
artificial data sets described in Section 4.

5 Ṫ is the set of “mapped” training sequences using the 1-D frequency profiles.
6 T̈ is the set of “mapped” training sequences using the 2-D frequency profiles.
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Sensitivity to Parameters

We first investigate the sensitivity of the different parameters on the perfor-
mance of WIN1D and WIN2D. The techniques gave best overall performance
for window size k = 6, which was also the best performing window size for
the existing window based and Markovian techniques. The performance of
both techniques was not sensitive to the number of nearest neighbors. The
techniques gave best performance when the number of bins used to construct
the profile, p, was low (≈ 3). For larger values of p, the dimensionality of
the mapped data increased, and hence the performance of the distance based
anomaly detection technique deteriorated.

For the results provided in subsequent section, the optimal parameter set-
tings were found by testing on a validation set for different combinations of
the parameters (p, k, nn) and using the combination the provides best average
results across all data sets. The results are shown for p = 5, k = 6, and nn = 5.

Comparison with All Existing Techniques

The first set of results show how WIN1D and WIN2D compare against the
state of art techniques, discussed in Section 3, on the different public and arti-
ficial data sets. The comparison of average performance of the proposed tech-
niques with the existing techniques is shown in Figure 12. Notably, WIN1D,
which is based on tSTIDE, shows better performance than tSTIDE, and
WIN2D, which is based on FSAz, shows better performance than FSAz on
both public and artificial data set. Overall, WIN2D performs significantly bet-
ter than all existing techniques on average across all public and artificial data
sets.

The reason the proposed techniques perform better than the existing tech-
niques is because of the way the windows are utilized by the proposed tech-
niques. For example, let us consider tSTIDE and WIN1D. Both of these
techniques use the frequency of k-windows to distinguish between the normal
and anomalous test sequences. But tSTIDE weights the windows in a test
sequence by their frequencies and the sums the total weights to get an inverse
of the anomaly score. On the other hand, WIN1D bins the windows based on
their frequency, and then uses the normalized bin counts as features. By using
a nearest neighbor approach, WIN1D “learns” weights on different windows
to achieve best separability between the normal and anomalous test sequence.
Same holds true for FSAz and WIN2D.

Comparison with Best Existing Technique

The strength of the RBA based techniques, WIN1D and WIN2D, is that
they distinguish between normal and anomalous test sequences in a multi-
dimensional space, while most of the existing techniques operate along one
or a limited subset of the dimensions. In the second set of results we assess
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if this strength allows the RBA based techniques to outperform the existing
techniques.

In Table 10, we compare the accuracy results for WIN1D and WIN2D

against the best existing technique for each public data set. The results show
that both WIN1D and WIN2D are strictly better or comparable with the best
existing technique for almost all of the public data sets. The same inference
can be drawn from the AUC results for the public data sets in Table 11.

For artificial data sets, the performance of WIN2D is still significantly
better than the best existing technique for each data set as shown in Tables
.12 and 13. Notably, for the artificial data sets, the performance of WIN1D is
relatively worse than the best existing technique.

For artificial data sets, PST was found to be the best technique while both
FSA and FSAz were found to perform poorly for many artificial data sets.
The reason was that the artificial data sets were designed to break FSA and
FSAz, while PST , which utilizes the frequencies of varying length suffixes
of the k length windows, was able to distinguish between the normal and
anomalous test sequences. By using WIN2D, the behavior of PST is captured
and improved, and hence WIN2D outperforms PST on the artificial data sets.

12 Conclusions and Future Work

In this paper we have shown how the RBA framework can be used in the
context of anomaly detection for symbolic sequences. Visualizing symbolic
sequences is challenging, especially when the sequences are of varying length.
Using the RBA framework we provide a visualization scheme for symbolic
sequences.

The RBA based mapping for the symbolic sequences is motivated from the
existing techniques that use fixed length windows as a unit of analysis. In this
chapter we have shown how, using the RBA based features, one can understand
the performance of the different existing techniques. Moreover, the framework
can also be used to identify the fundamental differences between techniques.
For example, tSTIDE and FSA are shown to be highly different from each
other since they handle k-windows in distinct manner. The framework also
allows to identify the weaknesses of each technique. For example, the poor
performance of PST on most of the real data sets could be explained using
the framework. The same framework can also be used to construct scenarios
in which a given technique would perform well or poorly.

The analysis of the various distinguishing characteristics can also aid in
choosing optimal values of parameters for different techniques. For example,
Figure 9 shows the magnitude of difference between normal and anomalous
sequences in rub data set for different values of window size k. The maximum
difference occurs when k = 5 or 6. Our results indicate that all techniques
that depend on window size as a parameter give optimal performance for
these values of k. Similarly, for kNN and CLUSTER, the difference in the
corresponding characteristic for normal and anomalous test sequence, can be
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Fig. 7 Absolute difference in 2D frequency profiles for public data sets for k = 6 (snd-cert
– bsm-week3).

PFAM UNM DARPA
snd- snd- bsm- bsm- bsm-

hcv nad tet rvp rub unm cert week1 week2 week3 Avg
WIN1D 0.92 0.74 0.52 0.90 0.88 0.82 0.88 0.30 0.60 0.66 0.72
WIN2D 0.92 0.76 0.82 0.92 0.92 0.84 0.88 0.50 0.60 0.66 0.78

Existing Best 0.92 0.74 0.50 0.90 0.88 0.82 0.88 0.50 0.56 0.66 0.74

Table 10 Comparing accuracy of WIN1D and WIN2D against best existing technique for
public data sets.

PFAM UNM DARPA
snd- snd- bsm- bsm- bsm-

hcv nad tet rvp rub unm cert week1 week2 week3 Avg
WIN1D 1.00 0.98 0.98 1.00 1.00 0.99 0.98 0.75 0.92 0.92 0.95
WIN2D 1.00 0.99 0.99 1.00 1.00 0.99 0.98 0.91 0.93 0.92 0.97

Existing Best 1.00 0.98 0.98 1.00 1.00 0.99 0.96 0.88 0.91 0.97 0.97

Table 11 Comparing AUC of WIN1D and WIN2D against best existing technique for
public data sets.
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Fig. 8 Likelihood scores L(fk, fk−1), assigned by different techniques.

d1 d2 d3 d4 d5 d6 Avg
WIN1D 1.00 0.92 0.58 0.52 0.34 0.64 0.67
WIN2D 1.00 0.96 0.81 0.76 0.71 0.74 0.83

Existing Best 1.00 0.84 0.82 0.76 0.68 0.68 0.80

Table 12 Comparing accuracy of WIN1D and WIN2D against best existing technique for
artificial data sets.
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Fig. 9 Absolute difference in frequency profiles for rub data set.

calculated for different values of the parameter k. The value of k that results
in maximum difference in terms of the characteristic, is likely to give best
performance on that data set. One could argue that given a labeled validation
data set, a technique can be evaluated for different parameter values to obtain
the optimal value. But using the proposed framework, the analysis needs to
be done only for a characteristic, without having to test every technique that
depends on that characteristic.

The most significant outcome of applying the RBA framework to symbolic
sequences is that the features obtained from the mapping can be used to
develop powerful anomaly detection techniques, which outperform the existing
techniques. Moreover, the RBA based techniques are shown to better than
the best existing technique for most of the data sets. Thus instead of using
different existing techniques which are optimal for different data sets, RBA
provides one best technique across a variety of data sets. This is a significant
step towards the ultimate goal for the anomaly detection research, which is to
find a technique that can perform well across all application domains.
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(b) k = 5 (∆ = 0.19)
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(c) k = 4 (∆ = 0.20)
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(d) k = 3 (∆ = 0.19)
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Fig. 10 Absolute difference in frequency profiles for d6 data set.

d1 d2 d3 d4 d5 d6 Avg
WIN1D 1.00 1.00 0.91 0.89 0.76 0.87 0.90
WIN2D 1.00 1.00 0.98 0.98 0.96 0.98 0.98

Existing Best 1.00 0.96 0.98 0.98 0.96 0.95 0.97

Table 13 Comparing AUC of WIN1D and WIN2D against best existing technique for
artificial data sets.
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Fig. 11 Histogram of Average Similarities of Normal and Anomalous Test Sequences to
Training Sequences.
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Fig. 12 Comparison of average accuracies for WIN1D and WIN2D, and existing anomaly
detection techniques.
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