MINDS
Minnesota Intrusion Detection System
User Manual

March 8, 2009

MINDS Group*'

>kDepartment of Computer Science, University of Minnesota
f Army High Performance Computing and Research Center (AHPCRC), Minnesota

Contents

1

Introduction to MINDS

1.1 Outline of MINDS’s manual
Installing MINDS

2.1 System Requirements
2.2 External Libraries,
23 install e e
Executing MINDS from End to End

3.1

Setting Configuration Parameters

3.1.1
3.12
3.1.3
3.14
3.1.5
3.1.6
3.1.7
3.1.8
3.1.9

mergematch-config.xml
scandetector-config.xml
blkports e
dark.hosts
DP2D.POTES
P2p.hosts e e
p2pdetector-config.xml
anomalydetector-config.xml,
minds.rules

MINDS Data Format - mmr(merged and matched record)

Output Formats
nf2mmrecord e
collector e e e
e2mmrecord e e e e e e e

4.1
4.2
4.3
44
4.5
4.6

mmrcat

merge-match e e e e e

Scan Detector and Labeler - scan _detector

P2P Detector and Labeler - p2p_detector

MINDS Anomaly Detector - anomaly detector

W W

AN R W W W W

O O O 0 0 00

o

10

1 Introduction to MINDS

The Minnesota INtrusion Detection System (MINDS') is an end-to-end data mining
based intrusion detection solution that has been shown to be effective in detecting
cyber-intrusions on large scale networks [1, 2].

1.1 Outline of MINDS’s manual

The outline of this manual is as follows. Section 2 describes the installation process
for MINDS and the system requirements. Section 3 describes how to execute MINDS
from end to end and how to configure different parameters.

2 Installing MINDS

MINDS source code as well as binaries are available. The installation currently handles
three platforms - Linux, Sun Solaris OS and FreeBSD.

2.1 System Requirements

MINDS is written in GNU C++ and tested extensively on Linux, Sun Solaris and
FreeBSD. The distribution is available as source as well as binaries which can run
on ix86 architectures.

2.2 External Libraries

The installation requires one of the two external pre-compiled libraries depending on
the format of the input data (Cisco Netflows® or tcpdump® data). The installation can be
carried out for either one of the formats or for both formats. Additionally, MINDS also
requires an XML parser library* to parse the configuration files. The three libraries are
also packaged with the MINDS distribution.

2.3 install

To install the software first copy the files to a local directory - $local-home. By default,
MINDS will be installed in /usr/local, which requires root privileges. To install in a dif-
ferent directory, the directory name should be provided as $install-dir when installing
the various components below.

Untar the files

> tar -zxvf minds_0.1.tgz

Thttp://www.cs.umn.edu/research/MINDS
2ftp://ftp.eng.oar.net/pub/flow-tools/flow-tools-0.66.tar.gz
3http://www.tcpdump.org/release/libpcap-0.8.3.tar.gz
“http://sourceforge.net/projects/tinyxml

To install flow-tools

> cd $local-home/minds/src/flow-tools-0.68.2-rc5/
> ./configure —prefix $install-dir

> make install

To install pcap

> cd $local-home/minds/src/libpcap-0.8.1/
> ./configure —prefix $install-dir

> make install

To install xmiparser

> cd $local-home/minds/src/xmlparser/
> ./configure —prefix $install-dir

> make install

To install MINDS

> cd $local-home/minds/

> ./configure —prefix $install-dir

> make install

3 Executing MINDS from End to End

This section describes how to run MINDS from end-to-end. The entire execution is car-
ried out as a set of a number of steps which are individually described in the subsequent
sections. The minds code’s end to end execution comprises of following steps:

e Conversion to mmr format [No configuration parameters]

e Merge and match uni-directional flows to bi-directional sessions [mergematch-
config.xml]

p2p.hosts]

e P2P detection [p2pdetector-config.xml]

Scan detection and labeling [scandetector-config.xml, blk.ports, dark.hosts, p2p.ports,

e Behavioral anomaly detection and labeling [anomalydetector-config.xml, minds.rules]

Each of these steps will be described in detail in subsequent sections below.

3.1 Setting Configuration Parameters

As mentioned earlier, the MINDS 2.0 system involves multiple execution steps. The
output of each step can be controlled by specifying several threshold and other control
parameters. Moreover, several components require knowledge of the internal network
structure and other domain related information. All these are specified using a set of
configuration files. The description of the configuration files for each of the section are

given below. The configuration files are typically in XML format. Default versions of
configurations files are provided in $install-dir/etc/cfg.

3.1.1 mergematch-config.xml

This file is required by the Merge and Match routine to specify the internal IP addresses.
Multiple internal subnetworks and the corresponding masks can be specified.

3.1.2 scandetector-config.xml

This file is required by the Scan Detector to specify the internal IP addresses. Mul-
tiple internal subnetworks can be specified. Additionally, several parameters can be
specified for scan detection.

3.1.3 blk.ports

List of blocked ports for the target network. Each entry should be specified per line
(separated by carriage return) by the protocol followed by a space followed by the port
number. For e.g.

TCP 1993

3.1.4 dark.hosts

List of dark IPs inside the target network. Each line should contain the IP (in dot
format) of a host. For e.g.
198.162.222.2

3.1.5 p2p.ports

List of known p2p ports inside the target network. Each entry should be specified per
line (separated by carriage return) by the protocol followed by a space followed by the
port number. For e.g.

TCP 41170

3.1.6 p2p.hosts

List of known p2p hosts inside the target network. Each line should contain the IP (in
dot format) of a host. For e.g.
198.162.222.2

3.1.7 p2pdetector-config.xml

This file is required by the P2P Detector to specify various parameters as well as list of
known p2p/malware/good ports.

3.1.8 anomalydetector-config.xml

This file contains the configuration parameters which can be set by the user to run the
anomaly detector.

3.1.9 minds.rules
This file describes how the rule files can be used to filter the data.

e Ruleset keyword can be used to combine multiple runs in one shot. Anomaly
detection is run for every subset of flows corresponding to each ruleset.

e After a Ruleset keyword, rules can be typed in. There are two types of rules:
select and ignore. The default action of a ruleset is ignore all, i.e. if no select
rule applies for a given record, it’s ignored. Not all the rules have to be executed
for every single flow record. The action suggested by the rule (select / ignore) is
applied right away when a rule matches the record, i.e. if a select rule matches
the record, it’s added to the subset even if a later ignore rule matches the record
too. The precedence of the rules is from top to bottom; if the first rule doesn’t
apply, only then the second will be applied.

e After a select / ignore keyword, one of the following keywords can be used.
srcip, dstip, srcport, dstport, protocol, packets, octets or all. The operations
that can be specified on these fields are: >=, >, ==, |=, <=, <, inside, outside,
net_equal, net_not_equal. The following keywords scans, p2p, hdt can be used
after the select / ignore keyword for flows labeled as scans, p2p or high port data
transfers.

e The operations should be followed by values of appropriate type. Multiple rules
on one line will be interpreted as AND’ed together. “inside” and “outside” can
be used provided that the boundaries of the network should be specified in the
config file.

In the case of ’all’, the rule will match anything and the action suggested by the rule
will be executed right away. Table 1 shows some sample rules.

(a)
ruleset example
ignore srclP inside dstIP inside
ignore srcIP outside dstIP outside
select sreport > 1024 dstport > 1024 protocol == 6
ignore protocol == 17
select srcip >=1.1.1.0 srcip <= 1.1.1.255
select srcip net_equal 1.1.1.0 24
select srcip net_equal 1.1.1.0 255.255.255.0

(b)
ruleset all
select all

Table 1: Two sample rulesets for MINDS Anomaly Detection Component. The last
three lines of rule-set example are equivalent.

4 MINDS Data Format - mmr(merged and matched record)

This is the MINDS internal data format. The input data is transformed to this format
using corresponding converters. The mmr data structure has following fields:

1. start timestamp
2. end timestamp
3. creation timestamp
4. source ip
5. source port
6. destination ip
7. destination port
8. number of packets sent
9. number of packets received
10. number of bytes sent
11. number of bytes received
12. protocol
13. TCP flags
14. source mask
15. destination mask
16. source AS number
17. source AS number
18. scan bit // NOT SCAN, SCAN WITHOUT REPLY, SCAN WITH REPLY
19. scan score // score upon declaration (scanner/benign)

20. scan reason // RSN UNKNOWN, KNOWNSCANNER, SCORE, BLOCKED,
EMPTY, ERASESCANNER, OLDESTRECORD, OLDESTSCORE

21. p2p bit // NOT_P2P, P2P
22. high port data transfer bit / NOT_HPDT, HPDT

23. lof_anomaly_score

4.1 Output Formats

All MINDS components (except for the format converters) operate on the binary files
containing mmr flows and output binary mmr files with certain bits modified. MINDS
anomaly detector generates two additional outputs. The first output are the top anoma-
lous flows, as determined by the anomaly detector, in text format. The second output
is the summarized output of the top anomalous flows in text format.

The annotated output file of MINDS is a text file with each line corresponding to
suspicious connection. Each line has 38 attributes. The labels and description of these
attributes is given in table 2.

[Column | Label [Description |
1 Connection ID ID of the Connection
2 Anomaly Score Score assigned by Anomaly Detector
3 Time Stamp Time at which the connection starts
4 duration Duration in seconds for which the connection lasted
5 Src IP/ Src Port Source IP and the Source Port in the connection
6 Dst IP/ Dst Port Destination IP and the Destination Port in the connection
7 Protocol Protocol - tep, udp, icmp, arp etc.
8 ttl Time to live - Defined for TCP connections
9 TCP Flags Defined for TCP Connections
10 window size Defined for TCP Connections
11 packets sent Number of packets sent from src to dst
12 bytes sent Number of bytes sent from src to dst
13 packets received Number of packets sent from dst to src
14 bytes received Number of bytes sent from dst to src
15 p2p bit 0 - normal connection, 1 - p2p connection
16 scan bit 0 - normal connection 1- scan 2 - scan with a reply
17 hpdt bit 0 - normal connection 1- high random port data transfer
18 inside bit 0 - dst ip inside network 1 - src ip inside network
19-38 Contribution Vector Assigned by the Anomaly Detector

Table 2: Description of each column in the final output of MINDS

4.2 nf2mmrecord

Converts Cisco Netflow data to mmr format.
Usage: cat <input-file> | ./nf2mmrecord -o <output-file>

e input-file - Location of the binary file containing Cisco Netflows.

e output-file - mmr file where the output mmr data will be stored.

4.3 collector

Converts TCPDump data to intermediate flow format. Usage: collector [-i <input_tcpdump_filename >
| -e <interface_name>] -o <output_filename>

o input_tcpdump_filename - Location of the input tcpdump file.

e interface_name - Name of the interface from which the packets are to be cap-
tured. Note that only one of the above two options can be used to specify the
input source.

o output-file - tcpdump intermediate flow file name where the output flows are
stored.

4.4 e2mmrecord

Converts the tcpdump intermediate flows to mmr format.
Usage: ./e2mmrecord -i <input-file> -0 <output-file>

e input-file - Location of the binary file containing tcpdump intermediate flows.

e output-file - mmr file where the output mmr data will be stored.

4.5 mmrcat

Prints the mmr flows in text format onto stdout.
Usage: ./mmrcat -i <input-file>

e input-file - Location of the input binary mmr file.

4.6 merge-match

Merges and matches the uni-directional flows into bi-directional sessions.
Usage: ./merge-match -1 <input-file> -o <output-file>

e input-file - Location of the input binary mmr file.

e output-file - mmr file where the output mmr data will be stored.

5 Scan Detector and Labeler - scan_detector

Detects and labels connections based on their scan like behavior. The scan detector
assigns different labels to the connections and a labeler classifies the connections as
normal, scans, p2p or high port data transfer. Note that the scan detector assigns
labels only to outgoing connections from the internal network(s) as specified in the
configuration file.

Usage: ./scan_detector <input-file><config-file><blocked ports><dark IPs><known
p2p ports><known p2p hosts><output—file>

e input-file - Location of the input binary mmir file.

e config-file - Location of the XML configuration file (see section 3.1.2).
e blocked ports - Location of file containing list of blocked ports (see section 3.1.3)

e dark hosts - Location of file containing list of dark IPs inside the network (see
section 3.1.4)

e p2p ports - Location of file containing list of known p2p ports (see section 3.1.5)
e p2p hosts - Location of file containing list of known p2p hosts (see section 3.1.6)

e output-file - mmr file where the output mmr data with scan labels will be stored.

6 P2P Detector and Labeler - p2p _detector

Detect and labels p2p connections.

7 MINDS Anomaly Detector - anomaly detector

Assigns anomaly scores to the connections based on their lof (local outlier factor) score.
The output is the connections in a text format annotated with their anomaly scores and
the contribution vector for different features.

Usage: ./anomaly_detector -i <input-file>> -c <config-file>> -r <rules-file> [-t <training-
file>] [-n <number_of_threads>] -0 <output-file>

e input-file - Location of the input binary mmir file.

e config-file - Location of the configuration file for the anomaly detector in XML
format (see section ?7?).

o rules-file - Location of the rules file for the anomaly detector (see section 3.1.9).

e training-file - Location of the file containing training data [optional parameter].
If this parameter is specified, the program reads training data samples from this
file. If the number of samples read is less than the training data size specified
in config-file, the remaining samples are randomly selected from the data. After
anomaly detection the training data is written back to the training-file.

e number_of _threads - Number of threads to be run simultaneously [optional pa-
rameter].

o output-file - text file where the output annotated data will be stored. The format
of the output file is shown in 4.1.

10

References

[1] V. Chandola, E. Eilertson, L. Ertoz, G. Simon, and V. Kumar. Data mining for cy-
ber security. In A. Singhal, editor, Data Warehousing and Data Mining Techniques
for Computer Security. Springer, 2006.

[2] L. Ertoz, E. Eilertson, A. Lazarevic, P.-N. Tan, V. Kumar, J. Srivastava, and
P. Dokas. MINDS - Minnesota Intrusion Detection System. In Data Mining -
Next Generation Challenges and Future Directions. MIT Press, 2004.

11

